cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181912 The value of r at the bifurcation point of the first period-5 cycle of the logistic map f(x) = r*x*(1 - x).

This page as a plain text file.
%I A181912 #14 Apr 02 2012 23:06:41
%S A181912 3,7,4,1,1,2,0,7,5,6,6,3,2,4,4,0,2,0,6,3,0,7,2,9,3,8,2,3,6,7,0,9,9,8,
%T A181912 3,7,1,0,0,0,5,0,8,4,3,2,6,5,6,2,2,5,2,5,5,2,4,9,8,1,1,5,6,5,0,7,3,0,
%U A181912 9,0,6,8,4,5,5,7,0,1,1,8,9,4,4,7,5,0,9,8,6,2,2,9,2,2,0,0,2,5,0,4
%N A181912 The value of r at the bifurcation point of the first period-5 cycle of the logistic map f(x) = r*x*(1 - x).
%C A181912 Root of a degree 15*2 = 30 polynomial.
%e A181912 3.7411207566...
%t A181912 RealDigits[1 + Sqrt[1 + T] /. NSolve[1291467969 - 313083144 T + 149426046 T^2 - 88548768 T^3 + 58697100 T^4 - 26978787 T^5 + 11351480 T^6 - 4444924 T^7 + 1519712 T^8 - 462764 T^9 + 118147 T^10 - 24008 T^11 + 3838 T^12 - 448 T^13 + 32 T^14 - T^15 == 0, T, Reals, WorkingPrecision -> 200][[1]][[1]]][[1]]
%Y A181912 Cf. A086178, A086179, A086180, A086181, A091517, A118452, A118453, A118746, A181906, A181907, A181909, A181910, A181911, A181913, A181915, A181916, A181917, A181918, A181919.
%K A181912 nonn,cons
%O A181912 1,1
%A A181912 _Cheng Zhang_, Apr 01 2012