cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181941 Numbers n such that some group of order n has a non-cyclic commutator group.

Original entry on oeis.org

12, 18, 24, 32, 36, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 98, 100, 108, 112, 120, 126, 128, 132, 144, 147, 150, 156, 160, 162, 168, 180, 192, 196, 198, 200, 204, 216, 224, 225, 228, 234, 240, 242, 243, 250, 252, 256, 264, 270, 276, 280, 288, 294, 300, 306, 312, 320, 324, 336, 338, 342
Offset: 1

Views

Author

R. J. Mathar, Apr 03 2012

Keywords

Comments

The complementary sequence 1, 2, 3, 4... is much denser and contains all n such that each group of order n has a cyclic commutator group.
Let the factorization of n into powers of squarefree mutually coprime numbers n_1, n_2, n_3, n_4, n_5,... be n = n_1 *n_2^2 *n_3^3 *n_4^4 * n_5^5*..., see A051903.
Then the complementary sequence contains n of the form n = n_1*n_2^2*n_3^3*n_4^4 under the constraints:
(i) n_4=1 or n_4=2
(ii) gcd(n, psi(n_2^2*n_3^3*n_4^4)) =1 where psi(k) = abs(A153038(k)) .

Examples

			1) Does not contain 10 = 10*1*1*1 where n_4=1 and gcd(10,|A153038(1)|)=1.
Both groups of order 10 have cyclic commutator groups: D10 has C5 and C10 has E.
2) Contains 12 = 3*2^2 where n_4=1 and gcd(12,|A153038(4)|) >1.
The group A4 of order 12 has a commutator group C2 x C2 which is not cyclic.
3) Contains 18 = 2*3^2 where n_4=1 and gcd(18,|A153038(9)|) >1.
The group (C3 x C3) : C2 of order 18 has a commutator group C3 x C3 which is not cyclic. (Gap notation, SmallGroup(18,4), where the colon is the semidirect product)
4) Contains 24 = 3*1*2^3 where n_4=1 and gcd(24,|A153038(9)|) >1.
5) Contains 32 = 1*1*1*1*2^5 where n_5>1.
6) Contains 48 = 3*1*1*2^4 where n_4=2 and gcd(48,|A153038(16)|)>1.
		

Programs

  • Maple
    nsq := proc(n)
        local f,L ;
        L := [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] ;
        if n = 1 then
            return L;
        else
            for f in ifactors(n)[2] do
                p := op(1,f) ;
                e := op(2,f) ;
                i := e ;
                L := subsop(i=op(i,L)*p^e,L) ;
            end do:
            return L ;
        end if;
    end proc:
    Pazdn4 := proc(L)
        if nops(L) <4 then
            1;
        else
            sqrt(sqrt(op(4,L))) ;
        end if;
    end proc:
    hihno1 := proc(L)
        i := 0 ;
        for j from 1 to nops(L) do
            if op(j,L) > 1 then
                i := j ;
            end if;
        end do:
        i ;
    end proc:
    for n from 1 to 600 do
        nf := nsq(n) ;
        n4 := Pazdn4(nf) ;
        psarg := op(2,nf)*op(3,nf)*op(4,nf) ;
        if  ( n4 =1 or n4 =2)  and gcd(n, abs(A153038(psarg))) = 1 and hihno1(nf) < 5 then
            ;
        else
            printf("%d,",n) ;
        end if;
    end do:
  • Mathematica
    A153038[n_] := If[n == 1, 1, x = 1; Do[p = f[[1]]; e = f[[2]]; x = x*Product[1 - p^s, {s, 1, e}], {f, FactorInteger[n]}]; x];
    nsq[n_] := Module[{f, L}, L = Table[1, {44}]; If[n == 1, Return[L], Do[{p, e} = f; L[[e]] = L[[e]]*p^e, {f, FactorInteger[n]}]]; L];
    Pazdn4[L_] := If[Length[L] < 4, 1, Sqrt[Sqrt[L[[4]]]]];
    hihno1[L_] := Module[{i, j}, i = 0; For[j = 1, j <= Length[L], j++, If[L[[j]] > 1, i = j]]; i];
    Reap[For[n = 1, n <= 600, n++, nf = nsq[n]; n4 = Pazdn4[nf]; psarg = nf[[2]] * nf[[3]] * nf[[4]]; If[(n4 == 1 || n4 == 2) && GCD[n, Abs[A153038[psarg]]] == 1 && hihno1[nf] < 5, , Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 07 2024, after R. J. Mathar *)