A181941 Numbers n such that some group of order n has a non-cyclic commutator group.
12, 18, 24, 32, 36, 48, 50, 54, 56, 60, 64, 72, 75, 80, 81, 84, 90, 96, 98, 100, 108, 112, 120, 126, 128, 132, 144, 147, 150, 156, 160, 162, 168, 180, 192, 196, 198, 200, 204, 216, 224, 225, 228, 234, 240, 242, 243, 250, 252, 256, 264, 270, 276, 280, 288, 294, 300, 306, 312, 320, 324, 336, 338, 342
Offset: 1
Keywords
Examples
1) Does not contain 10 = 10*1*1*1 where n_4=1 and gcd(10,|A153038(1)|)=1. Both groups of order 10 have cyclic commutator groups: D10 has C5 and C10 has E. 2) Contains 12 = 3*2^2 where n_4=1 and gcd(12,|A153038(4)|) >1. The group A4 of order 12 has a commutator group C2 x C2 which is not cyclic. 3) Contains 18 = 2*3^2 where n_4=1 and gcd(18,|A153038(9)|) >1. The group (C3 x C3) : C2 of order 18 has a commutator group C3 x C3 which is not cyclic. (Gap notation, SmallGroup(18,4), where the colon is the semidirect product) 4) Contains 24 = 3*1*2^3 where n_4=1 and gcd(24,|A153038(9)|) >1. 5) Contains 32 = 1*1*1*1*2^5 where n_5>1. 6) Contains 48 = 3*1*1*2^4 where n_4=2 and gcd(48,|A153038(16)|)>1.
Links
- G. Pazderski, Die Ordnungen, zu denen nur Gruppen mit gegebener Eigenschaft gehören, Archiv Math. 10 (1) (1959) 331.
Programs
-
Maple
nsq := proc(n) local f,L ; L := [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1] ; if n = 1 then return L; else for f in ifactors(n)[2] do p := op(1,f) ; e := op(2,f) ; i := e ; L := subsop(i=op(i,L)*p^e,L) ; end do: return L ; end if; end proc: Pazdn4 := proc(L) if nops(L) <4 then 1; else sqrt(sqrt(op(4,L))) ; end if; end proc: hihno1 := proc(L) i := 0 ; for j from 1 to nops(L) do if op(j,L) > 1 then i := j ; end if; end do: i ; end proc: for n from 1 to 600 do nf := nsq(n) ; n4 := Pazdn4(nf) ; psarg := op(2,nf)*op(3,nf)*op(4,nf) ; if ( n4 =1 or n4 =2) and gcd(n, abs(A153038(psarg))) = 1 and hihno1(nf) < 5 then ; else printf("%d,",n) ; end if; end do:
-
Mathematica
A153038[n_] := If[n == 1, 1, x = 1; Do[p = f[[1]]; e = f[[2]]; x = x*Product[1 - p^s, {s, 1, e}], {f, FactorInteger[n]}]; x]; nsq[n_] := Module[{f, L}, L = Table[1, {44}]; If[n == 1, Return[L], Do[{p, e} = f; L[[e]] = L[[e]]*p^e, {f, FactorInteger[n]}]]; L]; Pazdn4[L_] := If[Length[L] < 4, 1, Sqrt[Sqrt[L[[4]]]]]; hihno1[L_] := Module[{i, j}, i = 0; For[j = 1, j <= Length[L], j++, If[L[[j]] > 1, i = j]]; i]; Reap[For[n = 1, n <= 600, n++, nf = nsq[n]; n4 = Pazdn4[nf]; psarg = nf[[2]] * nf[[3]] * nf[[4]]; If[(n4 == 1 || n4 == 2) && GCD[n, Abs[A153038[psarg]]] == 1 && hihno1[nf] < 5, , Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jun 07 2024, after R. J. Mathar *)
Comments