cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181954 Weighted sum of all cyclic subgroups of prime order of the symmetric group S_n.

This page as a plain text file.
%I A181954 #19 Jul 07 2018 01:39:02
%S A181954 0,2,9,30,110,450,2457,11774,47910,264630,5565065,56021922,866143434,
%T A181954 9894742130,78233264865,470058202350,24530748587102,409761902222094,
%U A181954 10595012400106545,160826238368038490,1585844131838898330,16787211702213659322,1362379222505265018329
%N A181954 Weighted sum of all cyclic subgroups of prime order of the symmetric group S_n.
%C A181954 Sum of the orders of all subgroups of prime order in S_n.
%H A181954 Stephen A. Silver, <a href="/A181954/b181954.txt">Table of n, a(n) for n = 1..451</a>
%F A181954 a(n) = A186202(n) + A214003(n).
%e A181954 The symmetric group S_3 has one subgroup of order 3 and three subgroups of order 2, and no other subgroups of prime order. So a(3) = 3 + 2 + 2 + 2 = 9.
%t A181954 a[n_] := Sum[If[PrimeQ[p], Sum[n!/(k!*(n-k*p)!*p^k), {k, 1, n/p}]*p/(p-1), 0], {p, 2, n}];
%t A181954 Array[a, 24] (* _Jean-François Alcover_, Jul 06 2018, after _Andrew Howroyd_ *)
%o A181954 (PARI) a(n)={sum(p=2, n, if(isprime(p), sum(k=1, n\p, n!/(k!*(n-k*p)!*p^k))*p/(p-1)))} \\ _Andrew Howroyd_, Jul 03 2018
%Y A181954 Cf. A181955 (the alternating case).
%K A181954 nonn
%O A181954 1,2
%A A181954 _Olivier Gérard_, Apr 03 2012
%E A181954 More terms from _Stephen A. Silver_, Feb 16 2013