This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181957 #32 Oct 20 2021 08:17:55 %S A181957 10,19,92,239,829,2831,10061,38231,189311,621791,2853533,11423579 %N A181957 Smallest positive integer which cannot be calculated by an expression containing n binary operators (either add or multiply) whose operands are integers between 1 and 9; parenthesis allowed. %H A181957 Derek M. Jones, <a href="/A181957/a181957_1.r.txt">R program for calculating values</a> %H A181957 <a href="/index/Com#complexity">Index to sequences related to the complexity of n</a> %e A181957 a(4) = 239 because at least 4 operators are needed to calculate this value, e.g., (5*5+9)*7+1. %o A181957 (PARI) first(n)=my(op=[(x, y)->x+y, (x, y)->x*y], v=vector(n+1), t); v[1]=[1..9]; for(k=2, #v, my(u=[]); for(i=1, (k+1)\2, my(a=v[i], b=v[k-i]); t=Set(concat(apply(f->setbinop(f, a, b), op))); u=concat(u, t)); v[k]=setminus(Set(u), [0])); t=10; for(i=1, #v, while(setsearch(v[i], t), t++); v[i]=t); v; %o A181957 print(first(7)) \\ _Michael S. Branicky_, Oct 19 2021 after _Charles R Greathouse IV_ in A181898 %o A181957 (Python) %o A181957 def aupton(nn): %o A181957 alst = [10] %o A181957 R = {0: set(range(1, 10))} # R[n] is set reachable using n ops %o A181957 for n in range(1, nn): %o A181957 R[n] = set() %o A181957 for i in range((n+1)//2): %o A181957 for a in R[i]: %o A181957 for b in R[n-1-i]: %o A181957 R[n].update([a+b, a*b]) %o A181957 k = 10 %o A181957 while k in R[n]: k += 1 # n.b. R[n-1] <= R[n] due to * by 1 %o A181957 alst.append(k) %o A181957 return alst %o A181957 print(aupton(9)) # _Michael S. Branicky_, Oct 19 2021 %Y A181957 Cf. A181898, A181958, A181959, A181960. %Y A181957 Cf. A005520 (operand literal is always 1). %K A181957 nonn,more %O A181957 0,1 %A A181957 _Derek M. Jones_, Apr 03 2012 %E A181957 a(5)-a(7) corrected by and a(8)-a(11) from _Michael S. Branicky_, Oct 19 2021