This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181961 #30 May 11 2017 07:35:36 %S A181961 1,18,199,2309,26660,307983,3557711,41097664,474748249,5484153915, %T A181961 63351353194,731816432741,8453730886601,97655043951558, %U A181961 1128082705387895,13031283779122753,150533605489179940,1738920490541077131,20087504465180492695,232045017488460324836 %N A181961 Number of independent sets of nodes in graph C_6 x P_n (n>=0). %H A181961 Cesar Bautista, <a href="/A181961/b181961.txt">Table of n, a(n) for n = 0..219</a> %H A181961 C. Bautista-Ramos and C. Guillen-Galvan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Bautista/bautista4.html">Fibonacci numbers of generalized Zykov sums</a>, J. Integer Seq., 15 (2012), Article 12.7.8. %H A181961 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (12,-3,-25,-2,1). %F A181961 a(n) = 12*a(n-1)-3*a(n-2)-25*a(n-3)-2*a(n-4)+a(n-5) for n>=5, with a(0)=1, a(1)=18, a(2)=199, a(3)=2309, a(4)=26660. %F A181961 G.f.: (1 + 6*x - 14*x^2 + x^4)/(1 - 12*x + 3*x^2 + 25*x^3 + 2*x^4 - x^5). - _Charles R Greathouse IV_, Apr 04 2012 %o A181961 (PARI) Vec((1+6*x-14*x^2+x^4)/(1-12*x+3*x^2+25*x^3+2*x^4-x^5)+O(x^99)) \\ _Charles R Greathouse IV_, Apr 04 2012 %Y A181961 Row 6 of A286513. %K A181961 nonn,easy %O A181961 0,2 %A A181961 _Cesar Bautista_, Apr 04 2012