This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181966 #18 Jul 30 2018 19:09:04 %S A181966 0,2,12,72,480,4320,35280,322560,3265920,39916800,479001600, %T A181966 6706022400,93405312000,1482030950400,24845812992000,418455797760000, %U A181966 7469435990016000,147254595231744000,2919482409811968000,63255452212592640000,1430546380807864320000 %N A181966 Sum of the sizes of normalizers of all prime order cyclic subgroups of the symmetric group S_n. %H A181966 Andrew Howroyd, <a href="/A181966/b181966.txt">Table of n, a(n) for n = 1..200</a> %H A181966 Math.stackexchange.com, <a href="https://math.stackexchange.com/questions/1218392/normalizer-of-the-cyclic-group-in-s-n">Normalizer of the cyclic group in S_n</a> %F A181966 a(n) = n! * A013939(n). - _Andrew Howroyd_, Jul 30 2018 %o A181966 (GAP) List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( SymmetricGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( SymmetricGroup(n), Representative(x))) )); # _Andrew Howroyd_, Jul 30 2018 %o A181966 (GAP) %o A181966 a:=function(n) local total, perm, g, p, k; %o A181966 total:= 0; g:= SymmetricGroup(n); %o A181966 for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do %o A181966 perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1)); %o A181966 total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p)); %o A181966 od; od; %o A181966 return total; %o A181966 end; # _Andrew Howroyd_, Jul 30 2018 %o A181966 (PARI) a(n)={n!*sum(p=2, n, if(isprime(p), n\p))} \\ _Andrew Howroyd_, Jul 30 2018 %Y A181966 Cf. A181954 for the number of such subgroups. %Y A181966 Cf. A013939, A181967. %K A181966 nonn %O A181966 1,2 %A A181966 _Olivier Gérard_, Apr 04 2012 %E A181966 Terms a(8) and beyond from _Andrew Howroyd_, Jul 30 2018