cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181966 Sum of the sizes of normalizers of all prime order cyclic subgroups of the symmetric group S_n.

This page as a plain text file.
%I A181966 #18 Jul 30 2018 19:09:04
%S A181966 0,2,12,72,480,4320,35280,322560,3265920,39916800,479001600,
%T A181966 6706022400,93405312000,1482030950400,24845812992000,418455797760000,
%U A181966 7469435990016000,147254595231744000,2919482409811968000,63255452212592640000,1430546380807864320000
%N A181966 Sum of the sizes of normalizers of all prime order cyclic subgroups of the symmetric group S_n.
%H A181966 Andrew Howroyd, <a href="/A181966/b181966.txt">Table of n, a(n) for n = 1..200</a>
%H A181966 Math.stackexchange.com, <a href="https://math.stackexchange.com/questions/1218392/normalizer-of-the-cyclic-group-in-s-n">Normalizer of the cyclic group in S_n</a>
%F A181966 a(n) = n! * A013939(n). - _Andrew Howroyd_, Jul 30 2018
%o A181966 (GAP) List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( SymmetricGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( SymmetricGroup(n), Representative(x))) )); # _Andrew Howroyd_, Jul 30 2018
%o A181966 (GAP)
%o A181966 a:=function(n) local total, perm, g, p, k;
%o A181966   total:= 0; g:= SymmetricGroup(n);
%o A181966   for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do
%o A181966      perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1));
%o A181966      total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p));
%o A181966   od; od;
%o A181966   return total;
%o A181966 end; # _Andrew Howroyd_, Jul 30 2018
%o A181966 (PARI) a(n)={n!*sum(p=2, n, if(isprime(p), n\p))} \\ _Andrew Howroyd_, Jul 30 2018
%Y A181966 Cf. A181954 for the number of such subgroups.
%Y A181966 Cf. A013939, A181967.
%K A181966 nonn
%O A181966 1,2
%A A181966 _Olivier Gérard_, Apr 04 2012
%E A181966 Terms a(8) and beyond from _Andrew Howroyd_, Jul 30 2018