cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181967 Sum of the sizes of the normalizers of all prime order cyclic subgroups of the alternating group A_n.

This page as a plain text file.
%I A181967 #53 Jul 30 2018 20:29:10
%S A181967 0,0,3,24,180,1440,12600,120960,1270080,14515200,179625600,2634508800,
%T A181967 37362124800,566658892800,9807557760000,167382319104000,
%U A181967 3023343138816000,57621363351552000,1155628453883904000,25545471085854720000,587545834974658560000,13488008733331292160000
%N A181967 Sum of the sizes of the normalizers of all prime order cyclic subgroups of the alternating group A_n.
%C A181967 The first 11 terms of this sequence are the same as A317527. - _Andrew Howroyd_, Jul 30 2018
%H A181967 Andrew Howroyd, <a href="/A181967/b181967.txt">Table of n, a(n) for n = 1..200</a>
%F A181967 a(n) = n! * (A013939(n) - floor((n + 2)/4)) / 2. - _Andrew Howroyd_, Jul 30 2018
%o A181967 (GAP) List([1..7], n->Sum(Filtered( ConjugacyClassesSubgroups( AlternatingGroup(n)), x->IsPrime( Size( Representative(x))) ), x->Size(x)*Size( Normalizer( AlternatingGroup(n), Representative(x))) )); # _Andrew Howroyd_, Jul 30 2018
%o A181967 (GAP)
%o A181967 a:=function(n) local total, perm, g, p, k;
%o A181967   total:= 0; g:= AlternatingGroup(n);
%o A181967   for p in Filtered([2..n], IsPrime) do for k in [1..QuoInt(n,p)] do
%o A181967      if p>2 or IsEvenInt(k) then
%o A181967        perm:=PermList(List([0..p*k-1], i->i - (i mod p) + ((i + 1) mod p) + 1));
%o A181967        total:=total + Size(Normalizer(g, perm)) * Factorial(n) / (p^k * (p-1) * Factorial(k) * Factorial(n-k*p));
%o A181967      fi;
%o A181967   od; od;
%o A181967   return total;
%o A181967 end; # _Andrew Howroyd_, Jul 30 2018
%o A181967 (PARI) a(n)={n!*sum(p=2, n, if(isprime(p), if(p==2, n\4, n\p)))/2} \\ _Andrew Howroyd_, Jul 30 2018
%Y A181967 Cf. A181951 for the number of such subgroups.
%Y A181967 Cf. A181966 is the symmetric group case.
%Y A181967 Cf. A013939, A317527.
%K A181967 nonn
%O A181967 1,3
%A A181967 _Olivier Gérard_, Apr 04 2012
%E A181967 Some incorrect conjectures removed by _Andrew Howroyd_, Jul 30 2018
%E A181967 Terms a(9) and beyond from _Andrew Howroyd_, Jul 30 2018