This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181976 #9 Aug 12 2018 01:00:31 %S A181976 1,0,-27,72,0,-216,270,0,-459,720,0,-1080,936,0,-1350,2160,0,-2592, %T A181976 2214,0,-2808,3600,0,-4752,4590,0,-4590,6552,0,-7560,5184,0,-7371, %U A181976 10800,0,-10800,9360,0,-9774,12240,0,-15120,13500,0,-14040,17712,0,-19872,14760 %N A181976 Expansion of a(q) * b(q)^2 in powers of q where a(), b() are cubic AGM theta functions. %C A181976 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). %H A181976 G. C. Greubel, <a href="/A181976/b181976.txt">Table of n, a(n) for n = 0..2500</a> %F A181976 Expansion of b(q^3)^3 - 3 * b(q) * c(q^3)^2 in powers of q where b(), c() are cubic AGM theta functions. %F A181976 Expansion of b(q^3)^2 * (b(q) + c(q^3)) in powers of q^3 where b(), c() are cubic AGM theta functions. %F A181976 Expansion of (eta(q)^9 + 9 * q * eta(q)^6 * eta(q^9)^3) / eta(q^3)^3 in powers of q. %F A181976 a(3*n + 1) = 0. a(3*n) = A004007(n). %e A181976 G.f. = 1 - 27*q^2 + 72*q^3 - 216*q^5 + 270*q^6 - 459*q^8 + 720*q^9 + ... %t A181976 eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]^9 + 9*q*eta[q]^6*eta[q^9]^3)/eta[q^3]^3, {q, 0, 50}], q] (* _G. C. Greubel_, Aug 11 2018 *) %o A181976 (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^9 + 9 * x * eta(x + A)^6 * eta(x^9 + A)^3) / eta(x^3 + A)^3, n))}; %Y A181976 Cf. A004007. %K A181976 sign %O A181976 0,3 %A A181976 _Michael Somos_, Apr 04 2012