This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181997 #17 Dec 01 2014 07:09:37 %S A181997 1,1,2,9,46,259,1539,9484,59961,386319,2524940,16687599,111264335, %T A181997 747080253,5044629212,34218868880,232964088130,1590660486297, %U A181997 10885758313976,74627209920879,512254418843196,3519150502675731,24187028454513735,166249089897708930 %N A181997 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(3*n) * Product_{k=1..n} (1 - 1/A(x)^k). %C A181997 Compare the g.f. to the identity: %C A181997 G(x) = Sum_{n>=0} 1/G(x)^n * Product_{k=1..n} (1 - 1/G(x)^k) %C A181997 which holds for all power series G(x) such that G(0)=1. %F A181997 G.f. satisfies: 1+x = A(y) where y = x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6. %F A181997 G.f. satisfies: x = Sum_{n>=1} 1/A(x)^(n*(n+7)/2) * Product_{k=1..n} (A(x)^k - 1). %e A181997 G.f.: A(x) = 1 + x + 2*x^2 + 9*x^3 + 46*x^4 + 259*x^5 + 1539*x^6 +... %e A181997 The g.f. satisfies: %e A181997 x = (A(x)-1)/A(x)^4 + (A(x)-1)*(A(x)^2-1)/A(x)^9 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)/A(x)^15 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)/A(x)^22 + (A(x)-1)*(A(x)^2-1)*(A(x)^3-1)*(A(x)^4-1)*(A(x)^5-1)/A(x)^30 +... %t A181997 nmax = 20; aa = ConstantArray[0,nmax]; aa[[1]] = 1; Do[AGF = 1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[SeriesCoefficient[Sum[Product[(1-1/AGF^m)/AGF^3,{m,1,k}],{k,1,j}],{x,0,j}]==0,koef][[1]]; aa[[j]]=koef/.sol[[1]],{j,2,nmax}]; Flatten[{1,aa}] (* _Vaclav Kotesovec_, Dec 01 2014 *) %t A181997 CoefficientList[1+InverseSeries[Series[x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6, {x, 0, 20}], x],x] (* _Vaclav Kotesovec_, Dec 01 2014 *) %o A181997 (PARI) {a(n)=if(n<0,0,polcoeff(1 + serreverse(x - 2*x^2 - x^3 + 4*x^4 + 4*x^5 + x^6 +x^2*O(x^n)),n))} %o A181997 (PARI) {a(n)=local(A=[1,1]);for(i=1,n,A=concat(A,0);A[#A]=-polcoeff(sum(m=1,#A,1/Ser(A)^(3*m)*prod(k=1,m,1-1/Ser(A)^k)),#A-1));A[n+1]} %o A181997 for(n=0,25,print1(a(n),", ")) %Y A181997 Cf. A001002, A181998, A209441, A209442, A214693 (variant). %K A181997 nonn %O A181997 0,3 %A A181997 _Paul D. Hanna_, Apr 05 2012