This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182002 #34 Jul 27 2023 09:39:22 %S A182002 2,2,1,10,13,22,38,91,195,443,634,1121,3448,6793,17692 %N A182002 Smallest positive integer that cannot be computed using exactly n n's, the four basic arithmetic operations (+, -, *, /), and the parentheses. %e A182002 a(2) = 2 because two 2's can produce 0 = 2-2, 1 = 2/2, 4 = 2+2 = 2*2, so the smallest positive integer that cannot be computed is 2. %e A182002 a(3) = 1 because no expression with three 3's gives 1. %p A182002 f:= proc(n,b) option remember; %p A182002 `if`(n=1, {b}, {seq(seq(seq([k+m, k-m, k*m, %p A182002 `if`(m=0, NULL, k/m)][], m=f(n-i, b)), k=f(i, b)), i=1..n-1)}) %p A182002 end: %p A182002 a:= proc(n) local i, l; %p A182002 l:= sort([infinity, select(x-> is(x, integer) and x>0, f(n, n))[]]); %p A182002 for i do if l[i]<>i then return i fi od %p A182002 end: %p A182002 seq(a(n), n=1..8); # _Alois P. Heinz_, Apr 13 2012 %o A182002 (Python) %o A182002 from fractions import Fraction %o A182002 from functools import lru_cache %o A182002 def a(n): %o A182002 @lru_cache() %o A182002 def f(m): %o A182002 if m == 1: return {Fraction(n, 1)} %o A182002 out = set() %o A182002 for j in range(1, m//2+1): %o A182002 for x in f(j): %o A182002 for y in f(m-j): %o A182002 out.update([x + y, x - y, y - x, x * y]) %o A182002 if y: out.add(Fraction(x, y)) %o A182002 if x: out.add(Fraction(y, x)) %o A182002 return out %o A182002 k, s = 1, f(n) %o A182002 while k in s: k += 1 %o A182002 return k %o A182002 print([a(n) for n in range(1, 10)]) # _Michael S. Branicky_, Jul 29 2022 %Y A182002 Cf. A005245, A005520, A003313, A076142, A076091, A061373, A005421, A064097, A025280, A003037, A117618. %Y A182002 Cf. A171826, A171827, A171828, A171829, A258068, A258069, A258070, A258071. %K A182002 nonn,more %O A182002 1,1 %A A182002 _Ali Dasdan_, Apr 05 2012 %E A182002 a(11)-a(12) from _Alois P. Heinz_, Apr 22 2012 %E A182002 a(13)-a(14) from _Michael S. Branicky_, Jul 29 2022 %E A182002 a(15) from _Michael S. Branicky_, Jul 27 2023