This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182008 #21 Sep 08 2022 08:45:54 %S A182008 2,2,3,3,3,3,4,4,4,4,4,5,5,5,5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7, %T A182008 7,8,8,8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10, %U A182008 10,10,10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11 %N A182008 a(n) = ceiling(sqrt(2*n*log(2))). %C A182008 This sequence approximates the sequence of solutions to the Birthday Problem, A033810. The two sequences agree on a set of integers n with density (3+2 log 2)/6 = 0.731... %H A182008 Gheorghe Coserea, <a href="/A182008/b182008.txt">Table of n, a(n) for n = 1..10000</a> %H A182008 D. Brink, <a href="http://dx.doi.org/10.1007/s11139-011-9343-9">A (probably) exact solution to the Birthday Problem</a>, Ramanujan Journal, 2012, pp 223-238. %t A182008 Table[Ceiling[Sqrt[2 n Log[2]]], {n, 100}] (* _Vincenzo Librandi_, Aug 23 2015 *) %o A182008 (Magma) [Ceiling(Sqrt(2*n*Log(2))): n in [1..100]]; // _Vincenzo Librandi_, Aug 23 2015 %o A182008 (PARI) a(n) = { ceil(sqrt(2*n*log(2))) }; %o A182008 apply(n->a(n), vector(88, i, i)) \\ _Gheorghe Coserea_, Aug 23 2015 %Y A182008 Approximates A033810. %K A182008 nonn %O A182008 1,1 %A A182008 _David Brink_, Apr 06 2012