This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182009 #19 Aug 24 2015 04:47:33 %S A182009 2,2,3,3,3,4,4,4,4,4,5,5,5,5,5,5,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,8,8, %T A182009 8,8,8,8,8,8,8,8,8,9,9,9,9,9,9,9,9,9,9,9,10,10,10,10,10,10,10,10,10, %U A182009 10,10,10,10,10,11,11,11,11,11,11,11,11,11,11,11 %N A182009 a(n) = ceiling(sqrt(2n*log(2))+(3-2*log(2))/6). %C A182009 This sequence approximates the sequence of solutions to the Birthday Problem, A033810. The two sequences agree for almost all n, i.e., on a set of integers n with density 1. %H A182009 Gheorghe Coserea, <a href="/A182009/b182009.txt">Table of n, a(n) for n = 1..10000</a> %H A182009 D. Brink, <a href="http://dx.doi.org/10.1007/s11139-011-9343-9">A (probably) exact solution to the Birthday Problem</a>, Ramanujan Journal, 2012, pp 223-238. %p A182009 seq(ceil((2*n*log(2))^(1/2) + (3-2*log(2))/6), n=1..1000); # _Robert Israel_, Aug 23 2015 %t A182009 Table[Ceiling[Sqrt[2 n Log[2] + (3 - 2 Log[2])/6]], {n, 82}] (* _Michael De Vlieger_, Aug 24 2015 *) %o A182009 (PARI) %o A182009 a(n) = { ceil((2*n*log(2))^(1/2) + (3-2*log(2))/6) }; %o A182009 apply(n->a(n), vector(84, i, i)) \\ _Gheorghe Coserea_, Aug 23 2015 %Y A182009 Approximates A033810. %K A182009 nonn %O A182009 1,1 %A A182009 _David Brink_, Apr 06 2012