This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182014 #23 May 11 2017 07:35:52 %S A182014 1,29,477,8303,143697,2488431,43089985,746156517,12920616493, %T A182014 223736359029,3874270087045,67087749098875,1161706844818941, %U A182014 20116382073294655,348339884131004417,6031933298656980345,104450339960964929961,1808686034441106749965 %N A182014 Number of independent sets of nodes in graph C_7 x P_n (n>=0). %H A182014 Cesar Bautista, <a href="/A182014/b182014.txt">Table of n, a(n) for n = 0..399</a> %H A182014 C. Bautista-Ramos and C. Guillen-Galvan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Bautista/bautista4.html">Fibonacci numbers of generalized Zykov sums</a>, J. Integer Seq., 15 (2012), Article 12.7.8. %H A182014 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (17,8,-44,5,1). %F A182014 a(n) = 17*a(n-1) + 8*a(n-2) - 44*a(n-3) + 5*a(n-4) + a(n-5) with a(0)=1, a(1)=29, a(2)=477, a(3)=8303, a(4)=143697. %F A182014 G.f.: (x^4+6*x^3-24*x^2+12*x+1)/(-x^5-5*x^4+44*x^3-8*x^2-17*x+1). %t A182014 LinearRecurrence[{17,8,-44,5,1},{1,29,477,8303,143697},30] (* _Harvey P. Dale_, Aug 27 2012 *) %o A182014 (PARI) Vec((x^4+6*x^3-24*x^2+12*x+1)/(-x^5-5*x^4+44*x^3-8*x^2-17*x+1)+O(x^99)) \\ _Charles R Greathouse IV_, Apr 06 2012 %Y A182014 Row 7 of A286513. %K A182014 nonn,easy %O A182014 0,2 %A A182014 _Cesar Bautista_, Apr 06 2012