cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182021 Achromatic number of n-cycle.

Original entry on oeis.org

3, 2, 3, 3, 3, 4, 4, 5, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 12, 13
Offset: 3

Views

Author

N. J. A. Sloane, Apr 06 2012

Keywords

References

  • Hare, W. R.; Hedetniemi, S. T.; Laskar, R.; Pfaff, J. Complete coloring parameters of graphs. Proceedings of the sixteenth Southeastern international conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1985). Congr. Numer. 48 (1985), 171--178. MR0830709 (87h:05088)

Programs

  • Maple
    A093353 := proc(n)
        if n < 1 then
            0;
        else
            (n + modp(n,2))*(n+1)/2 ;
        end if;
    end proc:
    A182021 := proc(n)
        for m from 0 do
            sm := A093353(m-1) ;
            if sm >  n then
                m := m-1 ;
                sm := A093353(m-1) ;
                if type(m,'odd') and n = sm+1 then
                    return m-1 ;
                else
                    return m;
                end if;
            end if;
        end do:
    end proc:
    seq(A182021(n),n=3..80) ; # R. J. Mathar, Jul 12 2013
  • Mathematica
    A093353[n_] := If[n < 1, 0, (n+Mod[n, 2])*(n+1)/2];
    a[n_] := For[m = 0, True, m++, sm = A093353[m-1]; If[sm > n, m = m-1; sm = A093353[m-1]; If[OddQ[m] && n == sm+1, Return[m-1], Return[m]]]];
    Table[a[n], {n, 3, 80}] (* Jean-François Alcover, Apr 15 2023, after R. J. Mathar *)

Formula

Let s_m = m^2/2 if m even, m(m-1)/2 if m odd. For m >= 0, the s_m sequence is 0, 0, 2, 3, 8, 10, 18, 21, 32, 36, 50, ... (A093353 with a different offset).
Suppose s_m <= n < s_{m+1}. If m is odd and n = s_m + 1 then a(n) = m-1, otherwise a(n) = m.