A182039 Order of the group O(2,Z_n); number of orthogonal 2 X 2 matrices over the ring Z/nZ.
1, 2, 8, 16, 8, 16, 16, 64, 24, 16, 24, 128, 24, 32, 64, 128, 32, 48, 40, 128, 128, 48, 48, 512, 40, 48, 72, 256, 56, 128, 64, 256, 192, 64, 128, 384, 72, 80, 192, 512, 80, 256, 88, 384, 192, 96, 96, 1024, 112, 80, 256, 384, 104, 144, 192, 1024, 320, 112, 120, 1024, 120, 128, 384, 512, 192, 384, 136, 512, 384, 256, 144, 1536
Offset: 1
Examples
a(1) = 1 because 1 = 0 in the zero ring, so although there only exists the zero matrix, it still equals the unit matrix. O(2,Z_6) = {[0,1;5,0], [0,1;1,0], [0,5;1,0], [0,5;5,0], [1,0;0,1], [1,0;0,5], [2,3;3,2], [2,3;3,4], [3,2;4,3], [3,2;2,3], [3,4;2,3], [3,4;4,3], [4,3;3,4], [4,3;3,2], [5,0;0,5], [5,0;0,1]}, so a(6) = 16. For n = 16, SO(2,Z_16) is generated by [9,0;0,9], [0,1;-1,0], and [4,1;-1,4] (see Jianing Song link in A060968), so O(2,Z_16) is generated by [-1,0;0,1], [9,0;0,1], [9,0;0,9], [0,1;-1,0], and [4,1;-1,4], which gives O(2,Z_16) is isomorphic to the semiproduct of C_2 X C_4 X C_4 and C_2 X C_2, so a(16) = 128.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000 (first 1000 terms from Joerg Arndt)
Programs
-
Mathematica
gg[n_]:=gg[n]=Flatten[Table[{{x,y},{z,t}},{x,n},{y,n},{t,n},{z,n}],3]; orto[1]=1; orto[n_]:=orto[n]=Length@gg[n][[Select[Range[Length[gg[n]]],Mod[gg[n][[#]].Transpose[gg[n][[#]]],n]=={{1,0},{0,1}}&]]]; Table[Print[orto[n]];orto[n],{n,1,22}]
-
PARI
a(n)= { my(r=1, f=factor(n)); for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]); if(p==2 && e==1, r*=2); if(p==2 && e==2, r*=16); if(p==2 && e>=3, r*=2^(e+3)); if(p%4==1, r*=2*(p-1)*p^(e-1)); if(p%4==3, r*=2*(p+1)*p^(e-1)); ); return(r); } \\ Jianing Song, Nov 05 2019
Formula
From Jianing Song, Nov 05 2019: (Start)
Multiplicative with a(2) = 2, a(4) = 16, a(2^e) = 2^(e+3) for e >= 3; a(p^e) = 2*(p-1)*p^(e-1) if p == 1 (mod 4), 2*(p+1)*p^(e-1) if p == 3 (mod 4).
(End)
Extensions
Terms beyond a(22) from Joerg Arndt, Apr 13 2012
a(1) changed to 1 by Andrey Zabolotskiy, Nov 13 2019
Comments