cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182039 Order of the group O(2,Z_n); number of orthogonal 2 X 2 matrices over the ring Z/nZ.

Original entry on oeis.org

1, 2, 8, 16, 8, 16, 16, 64, 24, 16, 24, 128, 24, 32, 64, 128, 32, 48, 40, 128, 128, 48, 48, 512, 40, 48, 72, 256, 56, 128, 64, 256, 192, 64, 128, 384, 72, 80, 192, 512, 80, 256, 88, 384, 192, 96, 96, 1024, 112, 80, 256, 384, 104, 144, 192, 1024, 320, 112, 120, 1024, 120, 128, 384, 512, 192, 384, 136, 512, 384, 256, 144, 1536
Offset: 1

Views

Author

Keywords

Comments

Number of matrices M = [a,b;c,d] with 0 <= a,b,c,d < n such that M*transpose(M) == [1,0;0,1] (mod n).
From Jianing Song, Nov 05 2019: (Start)
Elements in O(2,Z_n) are of the form [x,y;-ty,tx], where x^2+y^2 == 1 (mod n), t^2 == 1 (mod n). Proof: If n = Product_{i=1..k} (p_i)^(e_i), then it can be shown by the Chinese Remainder Theorem that O(2,Z_n) is isomorphic to Product_{i=1..k} O(2,Z_(p_i)^(e_i)), so we can just study the elements in O(2,Z_p^e).
Let M = [x,y;z,w] be such a matrix; according to the conditions we have x^2+y^2 == z^2+w^2 == 1 (mod p^e), x*z+y*w == 0 (mod p^e). Here at least one of x,y is coprime to p^e, otherwise x^2+y^2 cannot be congruent to 1 mod p^e. If gcd(x,p^e) = 1, let t = x^(-1)*w; if gcd(y,p^e) = 1, let t = -y^(-1)*z (if gcd(x,p^e) = gcd(y,p^e) = 1 then these two t's are the same), then M = [x,y;-ty,tx] with determinant t, so t^2 == 1 (mod p^e). Specially, the elements in SO(2,Z_n) are of the form [x,y;-y,x], as the determinant is restricted to 1 mod n. See also A060968.
Note that O(2,Z_n) is non-abelian when n > 2: [0,1;-1,0] * [-1,0;0,1] = [0,1;1,0], but [-1,0;0,1] * [0,1;-1,0] = [0,-1;-1,0].
In general, let R be any commutative ring with unity, O(m,R) be the group of m X m matrices M over R such that M*M^T = I and SO(m,R) be the group of m X m matrices M over R such that M*M^T = I and det(M) = 1, then O(m,R)/SO(m,R) is isomorphic to {square roots of unity in R*}, where R* is the multiplicative group of R. This is because if we define f(M) = det(M) for M in O(m,R), then f is a surjective homomorphism from O(m,R) to {square roots of unity in R*}, and SO(m,R) is its kernel. Here, O(2,Z_n) is the internal semiproduct of SO(2,Z_n) and {[a,0;0,1]: a^2 = 1}. As a result:
If p is an odd prime or p^e = 4, then O(2,Z_p^e) is the internal semiproduct of SO(2,Z_p^e) and {I, P}, where I = [1,0;0,1] and P = [-1,0;0,1]. For any M in SO(2,Z_p^e), we have P*M*P = M^(-1). For odd primes p, O(2,Z_p^e) is, in fact, isomorphic to the dihedral group D_(2*(p+1)*p^(e-1)) if p == 3 (mod 4) and D_(2*(p-1)*p^(e-1)) if p == 1 (mod 4), since SO(2,Z_p^e) is cyclic as discussed in A060968. O(2,Z_4) is isomorphic to D_8 X C_2.
If e >= 3, then O(2,Z_2^e) is the internal semiproduct of SO(2,Z_2^e) and {I, P, Q, P*Q}, where I = [1,0;0,1], P = [-1,0;0,1] and Q = [2^(e-1)+1,0;0,1]. For any M in SO(2,Z_2^e), we have P*M*P = M^(-1); Q*M*Q = M if the upper-right entry of M is even, (2^(e-1)+1)*M otherwise.
The exponent of O(2,Z_n) (i.e., least e > 0 such that M^e = I for every M in O(2,Z_n)) is given by A235863(n).
The rank of O(2,Z_n) (i.e., the minimum number of generators) is 2*omega(n) if n is odd, 2*omega(n)-1 if n is even but not divisible by 4, 2*omega(n)+1 if n is divisible by 4 but not by 8 and 2*omega(n)+3 if n is divisible by 8, omega = A001221.
(End) [Comment partly rewritten by Jianing Song, Oct 09 2020]

Examples

			a(1) = 1 because 1 = 0 in the zero ring, so although there only exists the zero matrix, it still equals the unit matrix.
O(2,Z_6) = {[0,1;5,0], [0,1;1,0], [0,5;1,0], [0,5;5,0], [1,0;0,1], [1,0;0,5], [2,3;3,2], [2,3;3,4], [3,2;4,3], [3,2;2,3], [3,4;2,3], [3,4;4,3], [4,3;3,4], [4,3;3,2], [5,0;0,5], [5,0;0,1]}, so a(6) = 16.
For n = 16, SO(2,Z_16) is generated by [9,0;0,9], [0,1;-1,0], and [4,1;-1,4] (see Jianing Song link in A060968), so O(2,Z_16) is generated by [-1,0;0,1], [9,0;0,1], [9,0;0,9], [0,1;-1,0], and [4,1;-1,4], which gives O(2,Z_16) is isomorphic to the semiproduct of C_2 X C_4 X C_4 and C_2 X C_2, so a(16) = 128.
		

Crossrefs

Cf. A060968 (order of SO(2,Z_n)), A060594, A235863, A001221, A209411.

Programs

  • Mathematica
    gg[n_]:=gg[n]=Flatten[Table[{{x,y},{z,t}},{x,n},{y,n},{t,n},{z,n}],3];
    orto[1]=1;
    orto[n_]:=orto[n]=Length@gg[n][[Select[Range[Length[gg[n]]],Mod[gg[n][[#]].Transpose[gg[n][[#]]],n]=={{1,0},{0,1}}&]]];
    Table[Print[orto[n]];orto[n],{n,1,22}]
  • PARI
    a(n)=
    {
        my(r=1, f=factor(n));
        for(j=1, #f[, 1], my(p=f[j, 1], e=f[j, 2]);
            if(p==2 && e==1, r*=2);
            if(p==2 && e==2, r*=16);
            if(p==2 && e>=3, r*=2^(e+3));
            if(p%4==1, r*=2*(p-1)*p^(e-1));
            if(p%4==3, r*=2*(p+1)*p^(e-1));
        );
        return(r);
    }
    \\ Jianing Song, Nov 05 2019

Formula

From Jianing Song, Nov 05 2019: (Start)
a(n) = A060968(n) * A060594(n).
Multiplicative with a(2) = 2, a(4) = 16, a(2^e) = 2^(e+3) for e >= 3; a(p^e) = 2*(p-1)*p^(e-1) if p == 1 (mod 4), 2*(p+1)*p^(e-1) if p == 3 (mod 4).
(End)

Extensions

Terms beyond a(22) from Joerg Arndt, Apr 13 2012
a(1) changed to 1 by Andrey Zabolotskiy, Nov 13 2019