This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182054 #25 Jan 05 2025 19:51:39 %S A182054 8,3,39,171,1055,5828,33327,188499,1069855,6065487,34399844,195074223, %T A182054 1106262671,6273528979,35576813647,201753798116,1144133068159, %U A182054 6488305791115,36794770328583,208660804936031,1183302172416580,6710431459264095,38054430587741959 %N A182054 Number of independent sets of nodes in the generalized Petersen graph G(2n,2) (n>=0). %H A182054 Cesar Bautista, <a href="/A182054/b182054.txt">Table of n, a(n) for n = 0..499</a> %H A182054 C. Bautista-Ramos and C. Guillen-Galvan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Bautista/bautista4.html">Fibonacci numbers of generalized Zykov sums</a>, J. Integer Seq., 15 (2012), Article 12.7.8. %H A182054 Stephan G. Wagner, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/44-4/quartwagner04_2006.pdf">The Fibonacci Number of Generalized Petersen Graphs</a>, Fibonacci Quarterly, 44 (2006), 362-367. %H A182054 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,15,3,-13,4). %F A182054 a(n) = 3*a(n-1)+15*a(n-2)+3*a(n-3)-13*a(n-4)+4*a(n-5) with a(0)=8, a(1)=3, a(2)=39, a(3)=171, a(4)=1055, a(5)=5828. %F A182054 G.f.: ((6*x^2-11*x-8)*(2*x^3-5*x^2-4*x+1)) / (4*x^5-13*x^4+3*x^3+15*x^2+3*x-1). %Y A182054 Cf. A182077. %K A182054 nonn,easy %O A182054 0,1 %A A182054 _Cesar Bautista_, Apr 08 2012