cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182054 Number of independent sets of nodes in the generalized Petersen graph G(2n,2) (n>=0).

This page as a plain text file.
%I A182054 #25 Jan 05 2025 19:51:39
%S A182054 8,3,39,171,1055,5828,33327,188499,1069855,6065487,34399844,195074223,
%T A182054 1106262671,6273528979,35576813647,201753798116,1144133068159,
%U A182054 6488305791115,36794770328583,208660804936031,1183302172416580,6710431459264095,38054430587741959
%N A182054 Number of independent sets of nodes in the generalized Petersen graph G(2n,2) (n>=0).
%H A182054 Cesar Bautista, <a href="/A182054/b182054.txt">Table of n, a(n) for n = 0..499</a>
%H A182054 C. Bautista-Ramos and C. Guillen-Galvan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Bautista/bautista4.html">Fibonacci numbers of generalized Zykov sums</a>, J. Integer Seq., 15 (2012), Article 12.7.8.
%H A182054 Stephan G. Wagner, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/44-4/quartwagner04_2006.pdf">The Fibonacci Number of Generalized Petersen Graphs</a>, Fibonacci Quarterly, 44 (2006), 362-367.
%H A182054 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (3,15,3,-13,4).
%F A182054 a(n) = 3*a(n-1)+15*a(n-2)+3*a(n-3)-13*a(n-4)+4*a(n-5) with a(0)=8, a(1)=3, a(2)=39, a(3)=171, a(4)=1055, a(5)=5828.
%F A182054 G.f.: ((6*x^2-11*x-8)*(2*x^3-5*x^2-4*x+1)) / (4*x^5-13*x^4+3*x^3+15*x^2+3*x-1).
%Y A182054 Cf. A182077.
%K A182054 nonn,easy
%O A182054 0,1
%A A182054 _Cesar Bautista_, Apr 08 2012