This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182094 #24 Jan 14 2024 15:18:24 %S A182094 0,1,4,10,24,47,93,162,283,462,747,1154,1779,2642,3908,5643,8098, %T A182094 11398,15975,22030,30253,41027,55379,73983,98455,129838,170578,222447, %U A182094 289009,373064,479970,613962,782893,993349,1256546,1582466,1987365,2485840,3101146 %N A182094 Total area of the bounding boxes of all integer partitions of n. %H A182094 Alois P. Heinz, <a href="/A182094/b182094.txt">Table of n, a(n) for n = 0..1000</a> %F A182094 a(n) = A188814(n) + n*A000041(n) = A188814(n) + A066186(n). %e A182094 a(4) = 24 = 4+6+4+6+4 because the partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and the bounding boxes have areas 4*1, 3*2, 2*2, 2*3, 1*4. %e A182094 a(5) = 47 = 5+8+6+9+6+8+5 because the partitions of 5 are [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5]. %p A182094 b:= proc(n, i) option remember; local f, g; %p A182094 if n=0 or i=1 then [1, n] %p A182094 elif i<1 then [0, 0] %p A182094 else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i)); %p A182094 [f[1]+g[1], f[2]+g[2]+g[1]] %p A182094 fi %p A182094 end: %p A182094 a:= n-> add(add(i, i=b(n-j, min(j, n-j)))*j, j=1..n): %p A182094 seq(a(n), n=0..40); %t A182094 b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, n}, If[i < 1, {0, 0}, f = b[n, i - 1]; g = If[i > n, {0, 0}, b[n - i, i]]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]}]]; a[n_] := Sum[Sum[i, {i, b[n - j, Min[j, n - j]]}]*j, {j, 1, n}]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 05 2017, translated from Maple *) %Y A182094 Cf. A000041, A066186, A115995, A188814. %K A182094 nonn %O A182094 0,3 %A A182094 _Alois P. Heinz_, Apr 11 2012