cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182099 Total area of the largest inscribed rectangles of all integer partitions of n.

This page as a plain text file.
%I A182099 #20 Dec 06 2020 09:07:09
%S A182099 0,1,4,8,18,29,54,82,136,202,309,441,658,915,1303,1790,2479,3337,4541,
%T A182099 6022,8045,10554,13876,17996,23409,30055,38634,49208,62650,79116,
%U A182099 99898,125213,156848,195339,242964,300707,371770,457493,562292,688451,841707,1025484
%N A182099 Total area of the largest inscribed rectangles of all integer partitions of n.
%C A182099 a(n) >= A000041(n)*A061017(n) for n>0 because the least largest inscribed rectangle of any integer partition of n is A061017(n) and A000041(n) is the number of partitions of n.
%C A182099 a(n) >= A116503(n), the sum of the areas of the Durfee squares of all partitions of n.
%H A182099 Alois P. Heinz, <a href="/A182099/b182099.txt">Table of n, a(n) for n = 0..175</a>
%F A182099 a(n) = Sum_{k=1..n} k * A115723(n,k) for n>0, a(0) = 0.
%F A182099 a(n) = Sum_{k=1..n} k * (A182114(n,k) - A182114(n,k-1)).
%e A182099 a(4) = 18 = 4+3+4+3+4 because the partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and the largest inscribed rectangles have areas 4*1, 3*1, 2*2, 1*3, 1*4.
%e A182099 a(5) = 29 = 5+4+4+3+4+4+5 because the partitions of 5 are [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].
%p A182099 b:= proc(n, i, t, k) option remember; `if`(n=0, 1,
%p A182099       `if`(i=1, `if`(t+n>k, 0, 1), `if`(i<1, 0, b(n, i-1, t, k)
%p A182099       +add(`if`(t+j>k/i, 0, b(n-i*j, i-1, t+j, k)), j=1..n/i))))
%p A182099     end:
%p A182099 a:= n-> add(k*(b(n, n, 0, k) -b(n, n, 0, k-1)), k=1..n):
%p A182099 seq(a(n), n=0..50);
%t A182099 b[n_, i_, t_, k_] := b[n, i, t, k] = If[n == 0, 1, If[i == 1, If[t + n > k, 0, 1], If[i < 1, 0, b[n, i - 1, t, k] + Sum[If[t + j > k/i, 0, b[n - i j, i - 1, t + j, k]], {j, 1, n/i}]]]];
%t A182099 a[n_] := Sum[k(b[n, n, 0, k] - b[n, n, 0, k - 1]), {k, 1, n}];
%t A182099 a /@ Range[0, 50] (* _Jean-François Alcover_, Dec 06 2020, after _Alois P. Heinz_ *)
%Y A182099 Cf. A000041, A061017, A115723, A116503.
%K A182099 nonn
%O A182099 0,3
%A A182099 _Alois P. Heinz_, Apr 11 2012