This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182105 #97 Aug 02 2025 06:51:25 %S A182105 1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,16,1,1,2, %T A182105 1,1,2,4,1,1,2,1,1,2,4,8,1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,16,32,1,1,2,1, %U A182105 1,2,4,1,1,2,1,1,2,4,8,1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,16,1,1,2,1,1,2,4,1,1,2,1,1,2,4,8 %N A182105 Number of elements merged by bottom-up merge sort. %C A182105 Also triangle read by rows in which row j lists the first A001511(j) powers of 2, j >= 1, hence records give A000079. Right border gives A006519. Row sums give A038712. The equivalent sequence for partitions is A211009. See example. - _Omar E. Pol_, Sep 03 2013 %C A182105 It appears that A045412 gives the indices of the terms which are greater than 1. - _Carl Joshua Quines_, Apr 07 2017 %D A182105 Donald E. Knuth, The Art of Computer Programming, Vol. 4, Pre-Fascicle 6A, Section 7.2.2.2, Eq. (97). %D A182105 Donald E. Knuth, The Art of Computer Programming, Addison-Wesley (2015) Vol. 4, Fascicle 6, Satisfiability, p. 80, Eq. (130). %H A182105 N. J. A. Sloane, <a href="/A182105/b182105.txt">Table of n, a(n) for n = 1..10000</a> %H A182105 Filip Bártek, Karel Chvalovský, and Martin Suda, <a href="https://arxiv.org/abs/2403.12869">Regularization in Spider-Style Strategy Discovery and Schedule Construction</a>, arXiv:2403.12869 [cs.AI], 2024. See p. 5. %H A182105 Michael Luby Alistair, Alistair Sinclair, and David Zuckerman, <a href="https://citeseerx.ist.psu.edu/pdf/3240392cf2a4405031257383e3202cb020749449">Optimal speedup of Las Vegas algorithms</a>, Info. Processing Lett., 47 (1993), 173-180. %H A182105 Laurent Orseau, Levi H. S. Lelis, Tor Lattimore, Théophane Weber, <a href="https://arxiv.org/abs/1811.10928">Single-Agent Policy Tree Search With Guarantees</a>, arXiv:1811.10928 [cs.AI], 2018, also in Advances in Neural Information Processing Systems, 32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada. %F A182105 The following two constructions are given by Knuth: %F A182105 (a) a(1) = 1; thereafter a(n+1) = 2a(n) if a(n) has already occurred an even number of times, otherwise a(n+1) = 1. %F A182105 (b) Set (u_1, v_1) = (1, 1), thereafter (u_{n+1}, v_{n+1}) = ( A ? B : C) %F A182105 where %F A182105 A = u_n & -u_n = v_n (where the AND refers to the binary expansions), %F A182105 B = (u_n + 1, 1) (the result if A is true), %F A182105 C = (u_n, 2v_n) (the result if A is false). %F A182105 Then v_n = A182105, u_n = A046699 minus first term. %F A182105 a(n) = 2^(A082850(n)-1). - _Laurent Orseau_, Jun 18 2019 %e A182105 Using construction (b), the initial values n, u_n, v_n are: %e A182105 1, 1, 1 %e A182105 2, 2, 1 %e A182105 3, 2, 2 %e A182105 4, 3, 1 %e A182105 5, 4, 1 %e A182105 6, 4, 2 %e A182105 7, 4, 4 %e A182105 8, 5, 1 %e A182105 9, 6, 1 %e A182105 10, 6, 2 %e A182105 11, 7, 1 %e A182105 12, 8, 1 %e A182105 13, 8, 2 %e A182105 14, 8, 4 %e A182105 15, 8, 8 %e A182105 16, 9, 1 %e A182105 17, 10, 1 %e A182105 18, 10, 2 %e A182105 19, 11, 1 %e A182105 20, 12, 1 %e A182105 ... %e A182105 From _Omar E. Pol_, Sep 03 2013: (Start) %e A182105 Illustration of initial terms (first 2^5-1 terms): %e A182105 Written as an irregular triangle: T(j,k) is also the length of the k-th column in the j-th region of the diagram, as shown below. Note that the j-th row of the diagram is equivalent to the j-th composition (in colexicographic order) of 5 (cf. A228525): %e A182105 ------------------------------------ %e A182105 . Diagram Triangle %e A182105 ------------------------------------ %e A182105 . j / k: 1 2 3 4 5 / 1 2 3 4 5 %e A182105 ------------------------------------ %e A182105 . _ _ _ _ _ %e A182105 . 1 |_| | | | | 1; %e A182105 . 2 |_ _| | | | 1,2; %e A182105 . 3 |_| | | | 1; %e A182105 . 4 |_ _ _| | | 1,2,4; %e A182105 . 5 |_| | | | 1; %e A182105 . 6 |_ _| | | 1,2; %e A182105 . 7 |_| | | 1; %e A182105 . 8 |_ _ _ _| | 1,2,4,8; %e A182105 . 9 |_| | | | 1; %e A182105 . 10 |_ _| | | 1,2; %e A182105 . 11 |_| | | 1; %e A182105 . 12 |_ _ _| | 1,2,4; %e A182105 . 13 |_| | | 1; %e A182105 . 14 |_ _| | 1,2; %e A182105 . 15 |_| | 1; %e A182105 . 16 |_ _ _ _ _| 1,2,4,8,16; %e A182105 ... %e A182105 (End) %p A182105 A182105_list := proc(n) local L,m,k; %p A182105 L := NULL; %p A182105 for m from 1 to n do %p A182105 for k from 0 to padic[ordp](m, 2) do %p A182105 L := L,2^k od od; %p A182105 L; end: %p A182105 A182105_list(250); %p A182105 # _Peter Luschny_, Aug 01 2012, based on _Charles R Greathouse IV_'s PARI program. %t A182105 Array[Prepend[2^Range@ IntegerExponent[#, 2], 1] &, 48] // Flatten (* _Michael De Vlieger_, Jan 22 2019 *) %o A182105 (PARI) for(n=1,50,for(k=0,valuation(n,2),print1(2^k", "))) \\ _Charles R Greathouse IV_, Apr 12 2012 %Y A182105 Cf. A046699, A215020 (a version involving Fibonacci numbers). %K A182105 nonn,easy %O A182105 1,3 %A A182105 _Dhruv Matani_, Apr 12 2012 %E A182105 Edited by _N. J. A. Sloane_, Aug 02 2012