This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182107 #41 Mar 08 2020 00:05:41 %S A182107 0,0,2,2,0,0,10,20,0,0,114,210,0,0,1322,2460,0,0,16428,31122,0,0, %T A182107 214660,410378,0,0,2897424,5575682,0,0,40046134,77445152,0,0, %U A182107 563527294,1093987598,0,0,8042361426,15660579168,0,0,116083167058,226608224226,0,0,1691193906828,3308255447206,0,0,24830916046462,48658330768786,0,0,366990100477712,720224064591558,0,0,5454733737618820 %N A182107 Number of monomer-dimer tatami tilings (no four tiles meet) of the n X n grid with n monomers and equal numbers of vertical and horizontal dimers, up to rotational symmetry. %C A182107 Monomer-dimer tatami tilings are arrangements of 1 X 1 monomers, 2 X 1 vertical dimers and 1 X 2 horizontal dimers on subsets of the integer grid, with the property that no four tiles meet at any point. The maximum possible number of monomers in an n X n tatami tiling is n. Balanced tatami tilings are those with an equal number of vertical and horizontal dimers. %C A182107 Equals the ((n^2-n)/4)-th term of g.f. T_n(z) for A182110 if 4 divides n^2-n, and 0 otherwise. %H A182107 Alejandro Erickson, <a href="/A182107/b182107.txt">Table of n, a(n) for n = 2..199</a> %H A182107 Alejandro Erickson, Frank Ruskey, <a href="http://arxiv.org/abs/1304.0070">Enumerating maximal tatami mat coverings of square grids with v vertical dominoes</a>, arXiv:1304.0070 [math.CO], 2013. %F A182107 a(n) = 2 * Sum_{i=1..floor((n-1)/2)} (Sum_{j+k == (n^2-n)/4-(n-i-1)} S(n-i-2,j) * S(i-1,k) + Sum_{j+k == (n^2-n)/4} S(floor((n-2)/2), j) * S(floor((n-2)/2), k) ), where S(n,k) = S(n-1, k) + S(n-1, k-n), S(0,0)=1, S(0,k) = 0, S(n,k) = 0 if k < 0 or k > binomial(n+1,2). %e A182107 For n=4 the a(4)=2 solutions are %e A182107 ._ _ _ _. %e A182107 |_| |_|_| %e A182107 | |_|_ _| %e A182107 |_|_ _| | %e A182107 |_ _|_|_| %e A182107 . %e A182107 ._ _ _ _. %e A182107 |_|_| |_| %e A182107 |_ _|_| | %e A182107 | |_ _|_| %e A182107 |_|_|_ _| %e A182107 . %e A182107 For n=5 the a(5)=2 solutions are %e A182107 ._ _ _ _ _. %e A182107 |_|_ _| |_| %e A182107 |_ _| |_|_| %e A182107 |_| |_|_ _| %e A182107 | |_|_ _| | %e A182107 |_|_ _|_|_| %e A182107 . %e A182107 ._ _ _ _ _. %e A182107 |_| |_ _|_| %e A182107 |_|_| |_ _| %e A182107 |_ _|_| |_| %e A182107 | |_ _|_| | %e A182107 |_|_|_ _|_| %t A182107 S[0, 0]=1; S[0, _]=0; S[n_, k_] /; k<0 || k>Binomial[n+1, 2] =0; S[n_, k_]:= S[n, k] = S[n-1, k] + S[n-1, k-n]; %t A182107 a[n_]:= 2 Sum[Sum[k2 = (n^2-n)/4 - (n-i-1) - k1; S[n-i-2, k1] S[i-1, k2], {k1, 0, (n^2-n)/4 - (n-i-1)}] + Sum[k2 = (n^2-n)/4; S[Floor[(n-2)/2], k1] S[Floor[(n-2)/2], k2], {k1, 0, (n^2-n)/4}], {i, 1, Floor[(n-1)/2]}]; %t A182107 Table[a[n], {n, 2, 60}] (* _Jean-François Alcover_, Jan 29 2019 *) %o A182107 (Sage) %o A182107 @cached_function %o A182107 def genS(n,z): %o A182107 out = 1 %o A182107 for i in [j+1 for j in range(n)]: %o A182107 out = out*(1+z^i) %o A182107 return out %o A182107 VH = lambda n,z: 2*sum([genS(n-i-2,z)*genS(i-1,z)*z^(n-i-1) for i in range(1,floor((n-1)/2)+1)]) + genS(floor((n-2)/2),z)^2 %o A182107 ZP.<x> = PolynomialRing(ZZ) %o A182107 #4 divides n^2-n? coefficient of VH : 0 %o A182107 a = lambda n: (4.divides(n^2-n) and [ZP(VH(n,x))[(n^2-n)/4]] or [0])[0] %Y A182107 Cf. A001787, A226300, A226301. %Y A182107 Cf. A182110. %K A182107 nonn %O A182107 2,3 %A A182107 _Alejandro Erickson_, Apr 12 2012