This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182108 #7 Sep 08 2022 08:45:54 %S A182108 513,695,925,1177,1355,1395,1507,1681,1685,1687,1689,1819,1827,1893, %T A182108 1959,2043,2165,2169,2637,2651,2757,2875,2987,3159,3339,3417,3503, %U A182108 3649,3681,3743,3873,3963,3975,4041,4169,4353,4489,4767,4773,4805,4845,4881,5123 %N A182108 Odd composite numbers in successive intervals [2^i +1 .. 2^(i+1) -1] i=1,2,3... such that there are only composite symmetric XOR couples in either the original interval or any recursively halved interval that contains them. %C A182108 The description of the process is outlined in A199824. Up to the interval that starts 2^10 there are only 109 of these numbers, while there are a mere 50 primes of the type in A199824. %o A182108 (Magma) %o A182108 XOR := func<a, b | Seqint([ (adigs[i] + bdigs[i]) mod 2 : i in [1..n]], 2) %o A182108 where adigs := Intseq(a, 2, n) %o A182108 where bdigs := Intseq(b, 2, n) %o A182108 where n := 1 + Ilog2(Max([a, b, 1]))>; %o A182108 function IsClardynum(X,i) %o A182108 if i eq 1 then %o A182108 return true; %o A182108 else %o A182108 xornum:=2^i - 2; %o A182108 xorcouple:=XOR(X,xornum); %o A182108 if (IsPrime(xorcouple)) then %o A182108 return false; %o A182108 else %o A182108 return IsClardynum(X,i-1); %o A182108 end if; %o A182108 end if; %o A182108 end function; %o A182108 for i:= 3 to 10001 by 2 do %o A182108 if not IsPrime(i) then %o A182108 if IsClardynum(i,Ilog2(i)) then i; %o A182108 end if; %o A182108 end if; %o A182108 end for; %Y A182108 Cf. A199824. %K A182108 nonn %O A182108 1,1 %A A182108 _Brad Clardy_, Apr 12 2012