This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182111 #18 Jan 28 2022 09:48:47 %S A182111 1,7,3,6,6,10,6,6,4,1,8,5,5,6,10,3,8,2,2,7,5,4,7,3,3,8,2,4,3,3,5,7,6, %T A182111 3,6,6,1,8,6,6,6,3,3,7,5,5,1,6,4,6,10,3,6,5,3,5,5,8,10,10,3,8,6,5,5,6, %U A182111 7,11,6,6,8,2,1,1,5,7,7,8,4,6,2,4,8,6,8 %N A182111 Number of iterations of the map n -> sum of the cubes of the decimal digits of n. %C A182111 a(n) is the number of times you obtain the sums of cubes of digits of n before reaching a fixed point (last number of the cycle). %e A182111 a(3) = 3 because : %e A182111 3^3 = 27 -> 2^3 + 7^3 = 351; %e A182111 351 -> 3^3 + 5^3 + 1^3 = 153; %e A182111 153 -> 1^3+5^3+3^3 = 153 is the end because this number is already in the trajectory. Hence we obtain the map : 3 -> 27 -> 351 -> 153 with 3 iterations. %p A182111 a:= proc(n) local k, m, s; m:= n; s:= {}; %p A182111 for k from 0 do %p A182111 m:= add(i^3, i=convert(m, base, 10)); %p A182111 if m in s then return k fi; %p A182111 s:= s union {m} %p A182111 od %p A182111 end: %p A182111 seq(a(n), n=1..85); # _Alois P. Heinz_, Mar 01 2018 %Y A182111 Cf. A000578, A055012, A152077, A160862, A165331. %K A182111 nonn,base %O A182111 1,2 %A A182111 _Michel Lagneau_, Apr 12 2012