cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182120 Numbers for which the canonical prime factorization contains only exponents which are congruent to 2 modulo 3.

This page as a plain text file.
%I A182120 #20 Oct 21 2023 10:02:21
%S A182120 1,4,9,25,32,36,49,100,121,169,196,225,243,256,288,289,361,441,484,
%T A182120 529,676,800,841,900,961,972,1089,1156,1225,1369,1444,1521,1568,1681,
%U A182120 1764,1849,2048,2116,2209,2304,2601,2809,3025,3125,3249,3364,3481,3721,3844
%N A182120 Numbers for which the canonical prime factorization contains only exponents which are congruent to 2 modulo 3.
%C A182120 By convention 1 is included as the first term.
%H A182120 Amiram Eldar, <a href="/A182120/b182120.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Douglas Latimer)
%F A182120 Sum_{n>=1} 1/a(n) = zeta(3) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 1.56984817927051410948... . - _Amiram Eldar_, Oct 21 2023
%e A182120 100 is included, as its canonical prime factorization (2^2)*(5^2) contains only exponents which are congruent to 2 modulo 3.
%t A182120 Join[{1},Select[Range[5000],Union[Mod[Transpose[FactorInteger[#]][[2]],3]] == {2}&]] (* _Harvey P. Dale_, Aug 18 2014 *)
%o A182120 (PARI) {plnt=1; k=1; print1(k, ", "); plnt++;
%o A182120 mxind=76 ; mxind++ ; for(k=2, 2*10^6,
%o A182120 M=factor(k);passes=1;
%o A182120 sz = matsize(M)[1];
%o A182120 for(k=1,sz,  if( M[k,2] % 3 != 2, passes=0));
%o A182120 if( passes == 1 ,
%o A182120 print1(k, ", "); plnt++) ; if(mxind ==  plnt, break() ))}
%o A182120 (PARI) is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2]%3 != 2, return(0))); 1;} \\ _Amiram Eldar_, Oct 21 2023
%Y A182120 A062503 is a subsequence.
%Y A182120 Subsequence of A001694.
%Y A182120 Cf. A002117, A366762.
%K A182120 nonn,easy
%O A182120 1,2
%A A182120 _Douglas Latimer_, Apr 12 2012