This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182120 #20 Oct 21 2023 10:02:21 %S A182120 1,4,9,25,32,36,49,100,121,169,196,225,243,256,288,289,361,441,484, %T A182120 529,676,800,841,900,961,972,1089,1156,1225,1369,1444,1521,1568,1681, %U A182120 1764,1849,2048,2116,2209,2304,2601,2809,3025,3125,3249,3364,3481,3721,3844 %N A182120 Numbers for which the canonical prime factorization contains only exponents which are congruent to 2 modulo 3. %C A182120 By convention 1 is included as the first term. %H A182120 Amiram Eldar, <a href="/A182120/b182120.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Douglas Latimer) %F A182120 Sum_{n>=1} 1/a(n) = zeta(3) * Product_{p prime} (1 + 1/p^2 - 1/p^3) = 1.56984817927051410948... . - _Amiram Eldar_, Oct 21 2023 %e A182120 100 is included, as its canonical prime factorization (2^2)*(5^2) contains only exponents which are congruent to 2 modulo 3. %t A182120 Join[{1},Select[Range[5000],Union[Mod[Transpose[FactorInteger[#]][[2]],3]] == {2}&]] (* _Harvey P. Dale_, Aug 18 2014 *) %o A182120 (PARI) {plnt=1; k=1; print1(k, ", "); plnt++; %o A182120 mxind=76 ; mxind++ ; for(k=2, 2*10^6, %o A182120 M=factor(k);passes=1; %o A182120 sz = matsize(M)[1]; %o A182120 for(k=1,sz, if( M[k,2] % 3 != 2, passes=0)); %o A182120 if( passes == 1 , %o A182120 print1(k, ", "); plnt++) ; if(mxind == plnt, break() ))} %o A182120 (PARI) is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2]%3 != 2, return(0))); 1;} \\ _Amiram Eldar_, Oct 21 2023 %Y A182120 A062503 is a subsequence. %Y A182120 Subsequence of A001694. %Y A182120 Cf. A002117, A366762. %K A182120 nonn,easy %O A182120 1,2 %A A182120 _Douglas Latimer_, Apr 12 2012