A366762 Numbers whose canonical prime factorization contains only exponents which are congruent to 1 modulo 3.
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
q[n_] := AllTrue[FactorInteger[n][[;; , 2]], Mod[#, 3] == 1 &]; Select[Range[120], q]
-
PARI
is(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2]%3 != 1, return(0))); 1;}
Formula
Sum_{n>=1} 1/a(n)^s = zeta(3*s) * Product_{p prime} (1 + 1/p^s - 1/p^(3*s)), for s > 1.
Comments