cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182141 Number of independent sets of nodes in the armchair (3,3) carbon nanotorus graph of breadth n (n>=1).

This page as a plain text file.
%I A182141 #31 Mar 28 2024 16:12:16
%S A182141 27,18,322,2787,37730,486773,6616216,89809934,1226678898,16759965210,
%T A182141 229174768672,3134027776854,42863602781324,586250943722267,
%U A182141 8018366958787066,109670557564651352,1500014136347328018,20516391520781511387,280612359537735848734
%N A182141 Number of independent sets of nodes in the armchair (3,3) carbon nanotorus graph of breadth n (n>=1).
%H A182141 Cesar Bautista, <a href="/A182141/b182141.txt">Table of n, a(n) for n = 0..500</a>
%H A182141 C. Bautista-Ramos and C. Guillen-Galvan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Bautista/bautista4.html">Fibonacci numbers of generalized Zykov sums</a>, J. Integer Seq., 15 (2012), Article 12.7.8.
%H A182141 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (8,-1,-1018,1836,20616,-43461,-185682,384405,762090,-1499721,-1538730, 2873116,1499424,-2714609,-574862,1107300,18144,-108864).
%F A182141 a(n) = 18*a(n-1) -a(n-2) -1018*a(n-3) +1836*a(n-4) +20616*a(n-5) -43461*a(n-6) -185682*a(n-7) +384405*a(n-8) +762090*a(n-9) -1499721*a(n-10) -1538730*a(n-11) +2873116*a(n-12) +1499424*a(n-13) -2714609*a(n-14) -574862*a(n-15) +1107300*a(n-16) +18144*a(n-17) -108864*a(n-18).
%F A182141 G.f.: (979776*x^18 -75600*x^17 -12197940*x^16 +5916552*x^15 +35833019*x^14 -19220271*x^13 -44070216*x^12 +23310438*x^11 +26177559*x^10 -13274349*x^9 -7520073*x^8 +3654387*x^7 +940365*x^6 -451464*x^5 -43362*x^4 +24495*x^3 +25*x^2 -468*x+27)/( (x-1) *(x+1) *(3*x^3-5*x^2-5*x+1) *(36*x^4-x^3-20*x^2-x+1) *(36*x^4+x^3-20*x^2+x+1) *(28*x^5+42*x^4-109*x^3+17*x^2+13*x-1)).
%o A182141 (Maxima) a[0]:27; a[1]:18; a[2]:322; a[3]:2787; a[4]:37730; a[5]:486773; a[6]:6616216; a[7]:89809934; a[8]:1226678898; a[9]:16759965210; a[10]:229174768672; a[11]:3134027776854; a[12]:42863602781324; a[13]:586250943722267; a[14]:8018366958787066; a[15]:109670557564651352; a[16]:1500014136347328018; a[17]:20516391520781511387; a[18]:280612359537735848734;
%o A182141 a[n]:=18*a[n-1]-a[n-2]-1018*a[n-3]+1836*a[n-4]+20616*a[n-5]-43461*a[n-6]-185682*a[n-7]+384405*a[n-8]+762090*a[n-9]-1499721*a[n-10]-1538730*a[n-11]+2873116*a[n-12]+1499424*a[n-13]-2714609*a[n-14]-574862*a[n-15]+1107300*a[n-16]+18144*a[n-17]-108864*a[n-18];
%o A182141 makelist(a[k],k,0,25);
%K A182141 nonn,easy
%O A182141 0,1
%A A182141 _Cesar Bautista_, Apr 14 2012