cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182143 Number of independent vertex sets in the Moebius ladder graph with 2n nodes (n >= 0).

This page as a plain text file.
%I A182143 #59 May 08 2025 07:24:21
%S A182143 1,3,5,15,33,83,197,479,1153,2787,6725,16239,39201,94643,228485,
%T A182143 551615,1331713,3215043,7761797,18738639,45239073,109216787,263672645,
%U A182143 636562079,1536796801,3710155683,8957108165,21624372015,52205852193,126036076403,304278004997
%N A182143 Number of independent vertex sets in the Moebius ladder graph with 2n nodes (n >= 0).
%C A182143 Also the number of vertex covers. - _Eric W. Weisstein_, Jan 04 2014
%H A182143 Cesar Bautista, <a href="/A182143/b182143.txt">Table of n, a(n) for n = 0..1000</a>
%H A182143 C. Bautista-Ramos and C. Guillen-Galvan, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Bautista/bautista4.html">Fibonacci numbers of generalized Zykov sums</a>, J. Integer Seq., 15 (2012), Article 12.7.8
%H A182143 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/IndependentVertexSet.html">Independent Vertex Set</a>
%H A182143 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MoebiusLadder.html">Moebius Ladder</a>
%H A182143 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/VertexCover.html">Vertex Cover</a>
%H A182143 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,1).
%F A182143 G.f.: (x^2-2*x-1)/((x+1)*(x^2+2*x-1)).
%F A182143 a(n) = (1+sqrt(2))^n + (1-sqrt(2))^n - (-1)^n = A002203(n) - (-1)^n.
%F A182143 a(n) = a(n-1) + 3*a(n-2) + a(n-3) with a(0)=1, a(1)=3, a(2)=5.
%F A182143 From _Peter Bala_, Jun 29 2015: (Start)
%F A182143 a(n) = Pell(n-1) + Pell(n+1) - (-1)^n.
%F A182143 a(n) = [x^n] ( (1 + 2*x + sqrt(1 + 8*x + 8*x^2))/2 )^n.
%F A182143 exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + ... = Sum_{n >= 0} A001333*x^n. Cf. A098600. (End)
%t A182143 Table[(1 + Sqrt[2])^n + (1 - Sqrt[2])^n - (-1)^n, {n, 0, 30}] (* _Bruno Berselli_, Apr 14 2012 *)
%t A182143 Table[LucasL[n, 2] - (-1)^n, {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 15 2016 *)
%t A182143 LinearRecurrence[{1, 3, 1}, {1, 3, 5}, 20] (* _Eric W. Weisstein_, Mar 31 2017 *)
%t A182143 CoefficientList[Series[(-1 - 2 x + x^2)/(-1 + x + 3 x^2 + x^3), {x, 0, 20}], x] (* _Eric W. Weisstein_, Sep 21 2017 *)
%o A182143 (PARI) Vec((x^2-2*x-1)/((x+1)*(x^2+2*x-1))+O(x^31)) \\ _Bruno Berselli_, Apr 14 2012
%o A182143 (Magma) I:=[1,3,5]; [n le 3 select I[n] else Self(n-1)+3*Self(n-2)+Self(n-3): n in [1..31]]; // _Bruno Berselli_, Apr 14 2012
%Y A182143 Cf. A000129, A001333, A002203, A098600, A100227.
%K A182143 nonn,easy
%O A182143 0,2
%A A182143 _Cesar Bautista_, Apr 14 2012