This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182160 #10 Apr 21 2012 14:52:39 %S A182160 0,8,3,25,18,57,8,169,181,1,61,164,177,573,209,785,288,1121,347,517, %T A182160 549,2219,53,481,871,3144,878,3336,777,2369,996,1577,655,5109,936, %U A182160 3040,5290,1698,652,1349,4000,2781,4083,5559,2769,7834,7098,4686,3451,14278,5998 %N A182160 Number of iterations of the map n -> sum of the n-powers of the decimal digits of n. %C A182160 a(n) is the number of times you form the sum of the n-power of each digit of n before reaching the last number of the cycle. %C A182160 Generalization and conjecture: %C A182160 Let a number k. The number of iterations of the orbit k -> sum of the n - power of the decimal digits of k is finite for any exponent n and any starting value k. %e A182160 a(7) = 8 because: %e A182160 7^7 = 823543; %e A182160 8^7+2^7+3^7+5^7+4^7+3^7 = 2196163; %e A182160 2^7+1^7+9^7+6^7+1^7+6^7+3^7 = 5345158; %e A182160 5^7+3^7+4^7+5^7+1^7+5^7+8^7 = 2350099; %e A182160 2^7+3^7+5^7+0^7+0^7+9^7+9^7 = 9646378; %e A182160 9^7+6^7+4^7+6^7+3^7+7^7+8^7 = 8282107; %e A182160 8^7+2^7+8^7+2^7+1^7+0^7+7^7 = 5018104; %e A182160 5^7+0^7+1^7+8^7+1^7+0^7+4^7 = 2191663 is the end of the cycle with 8 iterations because 2191663-> 2^7+1^7+9^7+1^7+6^7+6^7+3^7 = 5345158 is already in the trajectory. %p A182160 with(numtheory) : T :=array(1..20000) :W:=array(1..20000):for n from 1 to 85 do : k:=0:nn:=n:for it from 1 to 20000 do:T :=convert(nn, base, 10) :l:=nops(T):s:=sum(T[i]^n, i=1..l):k:=k+1:W[k]:=s:nn:=s:od: z:= [seq(W[i], i=1..k)]:V:=convert(z, set):n1:=nops(V): printf ( "%d %d \n",n,n1):od: %Y A182160 Cf. A182111, A152077, A160862. %K A182160 nonn,base %O A182160 1,2 %A A182160 _Michel Lagneau_, Apr 15 2012