A182162 Triangle read by rows: number of extensional acyclic digraphs on n labeled nodes with k sources.
1, 2, 12, 192, 24, 8160, 2400, 898560, 384480, 14400, 245145600, 126040320, 9777600, 50400, 159035627520, 90043269120, 9660672000, 179222400, 80640, 237882053283840, 141969202744320, 17961178152960, 547498828800, 2586608640, 802369403419852800
Offset: 1
Examples
Triangle begins: 1; 2; 12; 192, 24; 8160, 2400; 898560, 384480, 14400; 245145600, 126040320, 9777600, 50400; ...
Links
- S. Wagner, Asymptotic enumeration of extensional acyclic digraphs, in Proceedings of the SIAM Meeting on Analytic Algorithmics and Combinatorics (ANALCO12).
Programs
-
Maple
A001192 := proc(n) option remember: if(n=0)then return 1: fi: return add((-1)^(n-k-1)*binomial(2^k-k,n-k)*procname(k), k=0..n-1); end: A182162 := proc(n,l) local vl: vl := add((-1)^(k-l)*binomial(n,k)*binomial(k,l)*binomial(2^(n-k)-n+k,k)*k!*(n-k)!*A001192(n-k), k=l..n): if(vl = 0)then return NULL: fi: return vl: end: for n from 1 to 10 do seq(A182162(n,l), l=1..n); od; # Nathaniel Johnston, Apr 18 2012
-
Mathematica
A001192[n_] := A001192[n] = If[n == 0, 1, Sum[(-1)^(n - k - 1)*Binomial[2^k - k, n - k]*A001192[k], {k, 0, n - 1}]]; A182162[n_, l_] := Module[{vl}, vl = Sum[(-1)^(k - l)* Binomial[n, k]*Binomial[k, l]*Binomial[2^(n - k) - n + k, k]*k!*(n - k)!*A001192[n - k], {k, l, n}]; If[vl == 0, Nothing, vl]]; Table[A182162[n, l], {n, 1, 10}, {l, 1, n}] // Flatten (* Jean-François Alcover, Mar 09 2023, after Nathaniel Johnston *)
Extensions
a(15)-a(25) from Nathaniel Johnston, Apr 18 2012