cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182162 Triangle read by rows: number of extensional acyclic digraphs on n labeled nodes with k sources.

Original entry on oeis.org

1, 2, 12, 192, 24, 8160, 2400, 898560, 384480, 14400, 245145600, 126040320, 9777600, 50400, 159035627520, 90043269120, 9660672000, 179222400, 80640, 237882053283840, 141969202744320, 17961178152960, 547498828800, 2586608640, 802369403419852800
Offset: 1

Views

Author

N. J. A. Sloane, Apr 15 2012

Keywords

Examples

			Triangle begins:
          1;
          2;
         12;
        192,        24;
       8160,      2400;
     898560,    384480,   14400;
  245145600, 126040320, 9777600, 50400;
  ...
		

Crossrefs

Row sums give A182161. First column is A182163. Row lengths are A182220.

Programs

  • Maple
    A001192 := proc(n) option remember: if(n=0)then return 1: fi: return add((-1)^(n-k-1)*binomial(2^k-k,n-k)*procname(k), k=0..n-1); end: A182162 := proc(n,l) local vl: vl := add((-1)^(k-l)*binomial(n,k)*binomial(k,l)*binomial(2^(n-k)-n+k,k)*k!*(n-k)!*A001192(n-k), k=l..n): if(vl = 0)then return NULL: fi: return vl: end: for n from 1 to 10 do seq(A182162(n,l), l=1..n); od; # Nathaniel Johnston, Apr 18 2012
  • Mathematica
    A001192[n_] := A001192[n] = If[n == 0, 1, Sum[(-1)^(n - k - 1)*Binomial[2^k - k, n - k]*A001192[k], {k, 0, n - 1}]];
    A182162[n_, l_] := Module[{vl}, vl = Sum[(-1)^(k - l)* Binomial[n, k]*Binomial[k, l]*Binomial[2^(n - k) - n + k, k]*k!*(n - k)!*A001192[n - k], {k, l, n}]; If[vl == 0, Nothing, vl]];
    Table[A182162[n, l], {n, 1, 10}, {l, 1, n}] // Flatten (* Jean-François Alcover, Mar 09 2023, after Nathaniel Johnston *)

Extensions

a(15)-a(25) from Nathaniel Johnston, Apr 18 2012