cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182171 Area A of the triangles such that A, the sides and three perpendicular bisectors are integers.

This page as a plain text file.
%I A182171 #13 Feb 16 2025 08:33:13
%S A182171 108,384,432,768,972,1536,1728,2700,3072,3456,3888,5292,6144,6912,
%T A182171 8748,9600,10800,12288,13068,13824,15552,17280,18252,18816,18900,
%U A182171 19200,21168,24300,24576,27000,27648,31104,31212,34560,34992,37632
%N A182171 Area A of the triangles such that A, the sides and three perpendicular bisectors are integers.
%C A182171 Let a triangle with the angles (A, B, C) and the sides opposite the angles labeled (a, b, c). The length of the perpendicular bisectors is given by (x, y, z) where:
%C A182171 x is the perpendicular bisector passing through the midpoint of the segment BC = a;
%C A182171 y is the perpendicular bisector passing through the midpoint of the segment AC = b;
%C A182171 z is the perpendicular bisector passing through the midpoint of the segment AB = c.
%C A182171 We obtain the relations:
%C A182171 x = (a/2)*tg B if x intersects AB or (a/2)* tg C if x intersects AC;
%C A182171 y = (b/2)* tg A if y intersects AB or (b/2)* tg C if y intersects BC;
%C A182171 z = (c/2)*tg A if z intersects AC or (c/2) *tg B if z intersects BC.
%C A182171 The area A of the triangle whose sides have lengths a, b, and c is given by Heron's formula: A = sqrt(s*(s-a)*(s-b)*(s-c)), where s = (a+b+c)/2.
%C A182171 Finally, we obtain:
%C A182171 x = (a/2) * min {tg B, tg C }; y = (b/2) * min {tg A, tg C }; z = (c/2) * min {tg A, tg B } with tg A = 4*A/(b^2+c^2-a^2) ; tg B = 4*A/(c^2+a^2-b^2) ; tg C = 4*A/(a^2+b^2-c^2).
%C A182171 Properties of this sequence:
%C A182171 The numbers of the form 108*n^2, 384*n^2, 768*n^2, 17280*n^2, 18900*n^2 are in the sequence because the area of the primitive triangles (15, 15, 18), (24, 32, 40), (40, 40, 64), (120, 288, 312), (150, 255, 315) are 108, 384, 768 , 17280 and 18900 respectively.
%C A182171 There exists three class of numbers included into a(n) :
%C A182171 Case (i) : a subset of isosceles triangles;
%C A182171 Case (ii) : a subset of right triangles;
%C A182171 Case (iii) : other (neither isosceles nor right triangle).
%H A182171 Ray Chandler, <a href="/A182171/b182171.txt">Table of n, a(n) for n = 1..65</a>
%H A182171 Eric W. Weisstein, <a href="https://mathworld.wolfram.com/Triangle.html">MathWorld: Triangle</a>
%F A182171 x = Min{2*a*A/(c^2+a^2-b^2) , 2*a*A/(a^2+b^2-c^2)};
%F A182171 y = Min{2*b*A/(a^2+b^2-c^2)  , 2*b*A/(b^2+c^2-a^2)};
%F A182171 z = Min{2*c*A/(c^2+a^2-b^2)  , 2*c*A/(b^2+c^2-a^2)}.
%e A182171 Primitive solutions follow:
%e A182171 Area,  ( a,   b,   c),  ( x,   y,   z), Case
%e A182171   108,  (15,  15,  18),  (10,  10,  12), Isosceles,
%e A182171   384,  (24,  32,  40),  (16,  12,  15), Right,
%e A182171   768,  (40,  40,  64),  (15,  15,  24), Isosceles,
%e A182171 17280, (120, 288, 312), (144,  60,  65), Right,
%e A182171 18900, (150, 255, 315), (100,  68,  84), Other,
%e A182171 27000, (255, 255, 450),  (68,  68, 120), Isosceles,
%e A182171 34560, (312, 312, 576),  (65,  65, 120), Isosceles,
%e A182171 53760, (272, 400, 448), (255, 150, 168), Other,
%e A182171 54000, (240, 450, 510), (225, 120, 136), Right,
%e A182171 91476, (429, 462, 495), (364, 308, 330), Other,
%e A182171 95256, (252, 819, 945), (168, 104, 120), Other,
%e A182171 96768, (336, 720, 960), (126, 105, 140), Other.
%p A182171 zz:=evalf(1/10^6):k:=0:nn:=350:
%p A182171 for a from 15 to nn do:
%p A182171    for b from a to nn do:
%p A182171        for c from b to nn do:
%p A182171              p:=(a+b+c)/2:s:=p*(p-a)*(p-b)*(p-c):
%p A182171              u:= a^2+b^2-c^2:v:= b^2+c^2-a^2 :w:=c^2+a^2-b^2:
%p A182171              if s>0 then s1:=sqrt(s):else fi:
%p A182171              if u>0 then u0:=u:else u0:=zz:fi:
%p A182171              if v>0 then v0:=v:else vo:=zz:fi:
%p A182171              if w>0 then w0:=w:else w0:=zz:fi:
%p A182171 a0:= evalf(2*a*s1/w0):a1:=evalf(2*a*s1/u0): b0:= evalf(2*b*s1/u0):b1:=evalf(2*b*s1/v0): c0:= evalf(2*c*s1/w0):c1:=evalf(2*c*s1/v0):
%p A182171              if a0<a1 then x:= a0:else x:=a1:fi:
%p A182171              if b0<b1 then y:=b0:else y:=b1:fi:
%p A182171              if c0<c1 then z:=c0:else z:=c1:fi:
%p A182171              if s1=floor(s1) and  x=floor(x) and y=floor(y) and z=floor(z)  then print(s1):else fi:
%p A182171 od:
%p A182171   od:
%p A182171    od:
%Y A182171 Cf. A188158, A210643, A181924, A181925, A181928.
%K A182171 nonn
%O A182171 1,1
%A A182171 _Michel Lagneau_, Apr 16 2012
%E A182171 More terms from _Ray Chandler_, Apr 24 2013