This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182185 #12 Apr 19 2012 10:20:14 %S A182185 1,3,5,9,15,21,29,39,49,63,81,99,123,153,183,219,261,303,353,411,469, %T A182185 537,615,693,781,879,977,1089,1215,1341,1485,1647,1809,1989,2187,2385, %U A182185 2607,2853,3099,3375,3681,3987,4323,4689,5055,5457,5895,6333,6813,7335,7857,8421 %N A182185 G.f.: exp( Sum_{n>=1} 3^b(n) * x^n/n ) where b(n) = highest exponent of 3 in 2^n+1. %F A182185 G.f. satisfies: A(x) = (1-x^2)*(1-x^3)/(1-x)^3 * A(x^3). %F A182185 Define TRISECTIONS: A(x) = T_0(x^3) + x*T_1(x^3) + x^2*T_2(x^3), then: %F A182185 (1) T_1(x)/T_0(x) = 3*(1+x)/(1+5*x), %F A182185 (2) T_2(x)/T_0(x) = (5+x)/(1+5*x), %F A182185 (3) T_0(x)/T_0(x^3) = (1+x)*(1+5*x)*(1-x^3)^2 / ((1-x)^3*(1+5*x^3)), %F A182185 (4) T_1(x)/T_1(x^3) = (1+x)^2*(1-x^3)^2 / ((1-x)^3*(1+x^3)), %F A182185 (5) T_2(x)/T_2(x^3) = (1+x)*(5+x)*(1-x^3)^2 / ((1-x)^3*(5+x^3)), %F A182185 (6) A(x) = (1-x)/(1+5*x)*T_0(x) = (1-x)/(1+x)*T_1(x)/3 = (1-x)/(5+x)*T_2(x). %e A182185 G.f.: A(x) = 1 + 3*x + 5*x^2 + 9*x^3 + 15*x^4 + 21*x^5 + 29*x^6 + 39*x^7 +... %e A182185 The g.f. satisfies: %e A182185 A(x)/A(x^3) = 1 + 3*x + 5*x^2 + 6*x^3 + 6*x^4 + 6*x^5 +...+ 6*x^n +... %e A182185 The logarithm of the g.f. begins: %e A182185 log(A(x)) = 3*x + x^2/2 + 9*x^3/3 + x^4/4 + 3*x^5/5 + x^6/6 + 3*x^7/7 + x^8/8 + 27*x^9/9 + x^10/10 + 3*x^11/11 + x^12/12 +...+ 3^b(n)*x^n/n +... %e A182185 where b(n) = highest exponent of 3 in 2^n+1, for n>=1, and begins: %e A182185 b = [1,0,2,0,1,0,1,0,3,0,1,0,1,0,2,0,1,0,1,0,2,0,1,0,1,0,4,...]. %e A182185 The g.f.s of the TRISECTIONS begin: %e A182185 T_0(x) = 1 + 9*x + 29*x^2 + 63*x^3 + 123*x^4 + 219*x^5 + 353*x^6 +... %e A182185 T_1(x) = 3 + 15*x + 39*x^2 + 81*x^3 + 153*x^4 + 261*x^5 + 411*x^6 +... %e A182185 T_2(x) = 5 + 21*x + 49*x^2 + 99*x^3 + 183*x^4 + 303*x^5 + 469*x^6 +... %e A182185 where T_1(x)/T_0(x) = 3*(1+x)/(1+5*x), T_2(x)/T_0(x) = (5+x)/(1+5*x). %o A182185 (PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 3^valuation(2^m+1, 3)*x^m/m)+x*O(x^n)), n)} %o A182185 for(n=0, 65, print1(a(n), ", ")) %o A182185 (PARI) {a(n)=local(A=1+x);for(i=1,ceil(log(n+1)/log(3)),A=(1-x^2)*(1-x^3)/(1-x)^3*subst(A,x,x^3+x*O(x^n)));polcoeff(A,n)} %Y A182185 Cf. A182000, A161809. %K A182185 nonn %O A182185 0,2 %A A182185 _Paul D. Hanna_, Apr 18 2012