cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182186 Number b(n) of basic ideals in the Borel subalgebra of the untwisted affine Lie algebra of type B.

This page as a plain text file.
%I A182186 #23 Oct 27 2017 16:34:07
%S A182186 24,128,648,3160,14984,69536,317264,1427912,6355080,28021504,
%T A182186 122586224,532681648,2301267408,9891512000,42327269792,180410129576,
%U A182186 766250022536,3244192404032,13696322822960,57673821115088,242287778611184,1015664308220864,4249246138360928
%N A182186 Number b(n) of basic ideals in the Borel subalgebra of the untwisted affine Lie algebra of type B.
%C A182186 The corresponding sequence for the usual type B Lie algebra is given by the central binomial coefficients A000984.
%H A182186 J. Nilsson, <a href="http://arxiv.org/abs/1204.3771">Enumeration of basic ideals in type B</a>
%H A182186 J. Nilsson, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Nilsson2/nilsson6.html">Enumeration of Basic Ideals in Type B Lie Algebras</a>, J. Int. Seq. 15 (2012) #12.9.5
%F A182186 a(n) = (3*n+5)*2^(2*n-2)-(2*(3*n-1))*binomial(2*n-2, n-1).
%F A182186 a(n) - 8*a(n-1) + 16*a(n-2) = (24/(n-1))*binomial(2*n-6,n-2) for n>3.
%F A182186 -(n-1)*(9*n^2-51*n+76)*a(n) +2*(36*n^3-231*n^2+478*n-295)*a(n-1) -8*(2*n-5)*(9*n^2-33*n+34)*a(n-2)=0. - _R. J. Mathar_, Oct 27 2017
%p A182186 B:=n->(3*n+5)*2^(2*n-2)-(2*(3*n-1))*binomial(2*n-2, n-1): seq(B(n), n=2..30);
%o A182186 (PARI) a(n) = (3*n+5)*2^(2*n-2)-(2*(3*n-1))*binomial(2*n-2, n-1); \\ _Michel Marcus_, Aug 18 2013
%Y A182186 Cf. A000984, A194460.
%K A182186 nonn,easy
%O A182186 2,1
%A A182186 _Jonathan Nilsson_, Apr 16 2012