This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182210 #27 Apr 25 2024 10:43:57 %S A182210 1,1,2,2,2,3,2,3,3,4,3,4,4,4,5,3,4,5,5,5,6,4,5,6,6,6,6,7,4,6,6,7,7,7, %T A182210 7,8,5,6,7,8,8,8,8,8,9,5,7,8,8,9,9,9,9,9,10,6,8,9,9,10,10,10,10,10,10, %U A182210 11,6,8,9,10,10,11,11,11,11,11,11,12,7,9,10,11,11,12,12,12,12,12,12,12,13,7,10,11,12,12,12,13,13,13,13,13,13,13,14,8,10,12,12,13,13,14,14,14,14,14,14,14,14,15 %N A182210 Triangle T(n,k) = floor(k*(n+1)/(k+1)), 1 <= k <= n. %C A182210 T(n,k) is the maximum number of wins in a sequence of n games in which the longest winning streak is of length k. %C A182210 T(n,k) generalizes the pattern found in sequence A004523 where A004523(n) = floor(2n/3). %H A182210 Reinhard Zumkeller, <a href="/A182210/b182210.txt">Rows n = 1..150 of triangle, flattened</a> %H A182210 Sela Fried and Toufik Mansour, <a href="https://doi.org/10.47443/dml.2023.218">The total number of descents and levels in (cyclic) tensor words</a>, Disc. Math. Lett. (2024) Vol. 13, 44-49. See p. 49. %F A182210 T(n,k) = floor(k(n+1)/(k+1)). %e A182210 T(12,4) = 10 since 10 is the maximum number of wins in a 12-game sequence in which the longest winning streak is 4. One such sequence with 10 wins is WWWWLWWWWLWW. %e A182210 The triangle T(n,k) begins %e A182210 1, %e A182210 1, 2, %e A182210 2, 2, 3, %e A182210 2, 3, 3, 4, %e A182210 3, 4, 4, 4, 5, %e A182210 3, 4, 5, 5, 5, 6, %e A182210 4, 5, 6, 6, 6, 6, 7, %e A182210 4, 6, 6, 7, 7, 7, 7, 8, %e A182210 5, 6, 7, 8, 8, 8, 8, 8, 9, %e A182210 5, 7, 8, 8, 9, 9, 9, 9, 9, 10, %e A182210 6, 8, 9, 9, 10, 10, 10, 10, 10, 10, 11, %e A182210 6, 8, 9, 10, 10, 11, 11, 11, 11, 11, 11, 12, %p A182210 seq(seq(floor(k*(n+1)/(k+1)),k=1..n),n=1..15); %t A182210 Flatten[Table[Floor[k*(n+1)/(k+1)],{n,0,20},{k,n}]] (* _Harvey P. Dale_, Jul 21 2015 *) %o A182210 (Haskell) %o A182210 a182210 n k = a182210_tabl !! (n-1) !! (k-1) %o A182210 a182210_tabl = [[k*(n+1) `div` (k+1) | k <- [1..n]] | n <- [1..]] %o A182210 -- _Reinhard Zumkeller_, Jul 08 2012 %Y A182210 A004523(n+1) = T(n,2). %K A182210 nonn,nice,easy,tabl,look %O A182210 1,3 %A A182210 _Dennis P. Walsh_, Apr 18 2012