A182211 The number of integers k < 10^n such that both k and k^3 mod 10^n have all odd decimal digits.
5, 25, 62, 151, 381, 833, 2163, 5291, 13317, 33519, 85179, 213083, 539212, 1344272, 3358571
Offset: 1
Crossrefs
Cf. A085597 (n such that both n and n^3 have all odd digits).
Programs
-
Haskell
oddDigits 0 = True oddDigits n = let (q,r) = quotRem n 10 in (odd r) && oddDigits q oddSet 0 = [] oddSet 1 = [1,3..9] oddSet k = [n | i <- [1,3..9], x <- oddSet (k-1), let n = i*10^(k-1) + x, oddDigits((n^3) `mod` 10^k)] main = putStrLn $ map (length . oddSet) [1..]
Comments