This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182259 #6 Dec 04 2016 19:46:24 %S A182259 0,3,0,11,3,0,28,11,3,0,56,28,11,3,0,99,56,26,11,3,0,159,97,52,26,11, %T A182259 3,0,240,153,93,50,26,11,3,0,344,230,149,85,50,26,11,3,0,475,330,222, %U A182259 139,85,50,26,11,3,0,635,453,314,212,133,85,50,26,11,3,0,828 %N A182259 Rectangular array: R(k,n) = number of ordered triples (w,x,y) with all terms in {1,...,n} and 2w^k<=x^k+y<k. %C A182259 Row 1: A182260 %C A182259 Row 2: A211810 %C A182259 Row 3: A211811 %C A182259 Limiting row sequence: A051925 %C A182259 Let R be the array in A211808 and let R' be the array in A182259. Then R(k,n)+R'(k,n)=3^(n-1). %C A182259 See the Comments at A211790. %e A182259 Northwest corner (with antidiagonals read from northeast to southwest): %e A182259 0...3...11...28...56...99...159 %e A182259 0...3...11...28...56...97...153 %e A182259 0...3...11...26...52...93...149 %e A182259 0...3...11...26...50...85...139 %e A182259 0...3...11...26...50...85...133 %t A182259 z = 48; %t A182259 t[k_, n_] := Module[{s = 0}, %t A182259 (Do[If[2 w^k > x^k + y^k, s = s + 1], %t A182259 {w, 1, #}, {x, 1, #}, {y, 1, #}] &[n]; s)]; %t A182259 Table[t[1, n], {n, 1, z}] (* A182260 *) %t A182259 Table[t[2, n], {n, 1, z}] (* A211810 *) %t A182259 Table[t[3, n], {n, 1, z}] (* A211811 *) %t A182259 TableForm[Table[t[k, n], {k, 1, 12}, {n, 1, 16}]] %t A182259 Flatten[Table[t[k, n - k + 1], %t A182259 {n, 1, 12}, {k, 1, n}]] (* A182259 *) %t A182259 Table[k (k - 1) (2 k + 5)/6, %t A182259 {k, 1, z}] (* row-limit sequence, A051925 *) %t A182259 (* _Peter J. C. Moses_, Apr 13 2012 *) %Y A182259 Cf. A211790. %K A182259 nonn,tabl %O A182259 1,2 %A A182259 _Clark Kimberling_, Apr 22 2012