cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182276 Sum of all parts minus the total number of parts of the shell model of partitions with n regions.

Original entry on oeis.org

0, 1, 3, 4, 8, 10, 15, 16, 20, 22, 31, 33, 38, 41, 51, 52, 56, 58, 67, 71, 74, 90, 92, 97, 100, 110, 112, 119, 123, 142, 143, 147, 149, 158, 162, 165, 181, 184, 192, 197, 201, 228, 230, 235, 238, 248, 250, 257, 261, 280, 284, 287, 299, 305, 310, 341
Offset: 1

Views

Author

Omar E. Pol, Apr 23 2012

Keywords

Comments

For the definition of "region of n" see A206437.

Examples

			Written has a triangle:
0,
1,
3,
4,    8;
10,  15;
16,  20, 22, 31;
33,  38, 41, 51;
52,  56, 58, 67, 71, 74, 90;
92,  97,100,110,112,119,123,142;
143,147,149,158,162,165,181,184,192,197,201,228;
230,235,238,248,250,257,261,280,284,287,299,305,310,341;
		

Crossrefs

Row j has length A187219(j). Right border gives A196087.

Programs

  • Mathematica
    lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];
    reg = {}; l = {};
    For[j = 1, j <= 56, j++,
      mx = Max@lex[j][[j]]; AppendTo[l, mx];
      For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];
      t = Take[Reverse[First /@ lex[mx]], j - i];
      AppendTo[reg, Total@t - Length@t]
      ];
    Accumulate@reg  (* Robert Price, Jul 25 2020 *)

Formula

a(n) = A182244(n) - A182181(n).
a(A000041(n)) = A196087(n).