cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182284 Triangle read by rows: T(n,k) = number of parts in the k-th zone of the last section of the set of partitions of n.

This page as a plain text file.
%I A182284 #14 Dec 01 2013 13:35:01
%S A182284 1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,3,2,2,1,1,1,1,1,1,
%T A182284 1,1,1,1,1,1,3,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,3,3,2,2,2,1,1,1,
%U A182284 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N A182284 Triangle read by rows: T(n,k) = number of parts in the k-th zone of the last section of the set of partitions of n.
%e A182284 Illustration of three arrangements of the last section of the set of partitions of 7 and the zone numbers:
%e A182284 --------------------------------------------------------
%e A182284 Zone \   a)                    b)                    c)
%e A182284 --------------------------------------------------------
%e A182284 15      (7)                   (7)       (. . . . . . 7)
%e A182284 14      (4+3)               (4+3)       (. . . 4 . . 3)
%e A182284 13      (5+2)               (5+2)       (. . . . 5 . 2)
%e A182284 12      (3+2+2)           (3+2+2)       (. . 3 . 2 . 2)
%e A182284 11        (1)                 (1)                   (1)
%e A182284 10          (1)               (1)                   (1)
%e A182284 9           (1)               (1)                   (1)
%e A182284 8             (1)             (1)                   (1)
%e A182284 7           (1)               (1)                   (1)
%e A182284 6             (1)             (1)                   (1)
%e A182284 5             (1)             (1)                   (1)
%e A182284 4               (1)           (1)                   (1)
%e A182284 3               (1)           (1)                   (1)
%e A182284 2                 (1)         (1)                   (1)
%e A182284 1                   (1)       (1)                   (1)
%e A182284 .
%e A182284 For n = 7 and k = 12 we can see that in the 12th zone of the last section there are three parts: 3, 2, 2, therefore T(7,12) = 3.
%e A182284 Written as a triangle begins:
%e A182284 1;
%e A182284 1,1;
%e A182284 1,1,1;
%e A182284 1,1,1,2,1;
%e A182284 1,1,1,1,1,2,1;
%e A182284 1,1,1,1,1,1,1,3,2,2,1;
%e A182284 1,1,1,1,1,1,1,1,1,1,1,3,2,2,1;
%e A182284 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,3,3,2,2,2,1;
%Y A182284 Row n has length A000041(n). Row sums give A138137.
%Y A182284 Cf. A135010, A138121, A193173, A182285.
%K A182284 nonn,tabf
%O A182284 1,10
%A A182284 _Omar E. Pol_, Apr 23 2012