cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182298 Smallest complementary perimeter, as defined in the comments, among all sets of nonnegative integers whose volume (sum) is n.

Original entry on oeis.org

0, 2, 4, 3, 6, 5, 4, 7, 7, 6, 5, 10, 8, 8, 7, 6, 12, 11, 9, 9, 8, 7, 11, 13, 12, 10, 10, 9, 8, 15, 12, 14, 13, 11, 11, 10, 9, 17, 16, 13, 15, 14, 12, 12, 11, 10, 17, 18, 17, 14, 16, 15, 13, 13, 12, 11, 16, 18, 19, 18, 15, 17, 16, 14, 14, 13, 12, 21, 17, 19, 20
Offset: 0

Views

Author

Patrick Devlin, Apr 23 2012

Keywords

Comments

The volume and perimeter of a set S of nonnegative integers are introduced in the reference. The volume is defined simply as the sum of the elements of S, and the perimeter is defined as the sum of the elements of S whose predecessor and successor are not both in S. The complementary perimeter (introduced in the link) of S is the perimeter of the complement of S in the set of nonnegative integers.

Examples

			For n=8, the set S={0,1,3,4} has volume (total sum) 8 and complementary perimeter (the sum of 2 and 5) is 7.  No other set of volume 8 has a smaller complementary perimeter, so a(8)=7.
Similarly, for n=11, the set S={2,4,5} has volume 11=2+4+5 and complementary perimeter 10=1+3+6.  This is the smallest among all sets with volume 11, so a(11)=10.
		

Crossrefs

Cf. A186053.

Formula

Following the notation in the link, for n >= 0, write n = (0+1+2+...+f(n)) - g(n), be the representation of n with f(n) and g(n) minimal such that 0 <= g(n) <= f(n). Then f(n) = A002024(n) = round(sqrt(2n)), and g(n) = A025581(n) = f(n)*(f(n)+1)/2 - n.
Finally, let Q(n):=a(n), and let P(n):=A186053(n). Then unless n is one of the 177 known counterexamples tabulated in the link, we have P(n) = f(n) + Q(g(n)), and Q(n) = 1 + f(n) + P(g(n)).

Extensions

More terms from Martin Ehrenstein, Nov 16 2023