cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182309 Triangle T(n,k) with 2 <= k <= floor(2(n+1)/3) gives the number of length-n binary sequences with exactly k zeros and with length two for the longest run of zeros.

Original entry on oeis.org

1, 2, 3, 2, 4, 6, 1, 5, 12, 6, 6, 20, 18, 3, 7, 30, 40, 16, 1, 8, 42, 75, 50, 10, 9, 56, 126, 120, 45, 4, 10, 72, 196, 245, 140, 30, 1, 11, 90, 288, 448, 350, 126, 15, 12, 110, 405, 756, 756, 392, 90, 5, 13, 132, 550, 1200, 1470, 1008, 357, 50, 1, 14, 156, 726
Offset: 2

Views

Author

Dennis P. Walsh, Apr 23 2012

Keywords

Comments

Triangle T(n,k) captures several well known sequences. In particular, T(n,2)=(n-1), the natural numbers; T(n,3)=(n-2)(n-3)=A002378(n-3), the "oblong" numbers; T(n,4)=(n-3)(n-4)^2/2=A002411(n-4), "pentagonal pyramidal" numbers; and also T(n,5)=(n-4)C(n-4,3)=A004320(n-6). Furthermore, row sums=A000100(n+1).

Examples

			For n=6 and k=3, T(6,3)=12 since there are 12 binary sequences of length 6 that contain 3 zeros and that have a maximum run of zeros of length 2, namely, 011100, 101100, 110100, 011001, 101001, 110010, 010011, 100110, 100101, 001110, 001101, and 001011.
Triangle T(n,k) begins
   1,
   2,
   3,   2,
   4,   6,   1,
   5,  12,   6,
   6,  20,  18,    3,
   7,  30,  40,   16,    1,
   8,  42,  75,   50,   10,
   9,  56, 126,  120,   45,    4,
  10,  72, 196,  245,  140,   30,    1,
  11,  90, 288,  448,  350,  126,   15,
  12, 110, 405,  756,  756,  392,   90,    5,
  13, 132, 550, 1200, 1470, 1008,  357,   50,   1,
  14, 156, 726, 1815, 2640, 2268, 1106,  266,  21,
  15, 182, 936, 2640, 4455, 4620, 2898, 1016, 161, 6,
		

Crossrefs

Row sums of triangle T(n,k)=A000100(n+1);
T(n,3)=A002378(n-3); T(n,4)=A002411(n-4);
T(n,5)=A004320(n-6).

Programs

  • Maple
    seq(seq(sum(binomial(n-k+1,j)*binomial(n-k+1-j,k-2*j),j=1..floor(k/2)),k=2..floor(2*(n+1)/3)),n=2..20);
  • Mathematica
    t[n_, k_] := Sum[ Binomial[n-k+1, j]*Binomial[n-k-j+1, k-2*j], {j, 1, k/2}]; Table[t[n, k], {n, 2, 15}, {k, 2, 2*(n+1)/3}] // Flatten (* Jean-François Alcover, Jun 06 2013 *)

Formula

T(n,k) = Sum_{j=1..k/2} binomial(n-k+1,j)*binomial(n-k-j+1,k-2j) for 2 <= k <= 2(n+1)/3.