cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182318 List of positive integers whose prime tower factorization, as defined in comments, does not contain the prime 2.

This page as a plain text file.
%I A182318 #42 May 17 2024 07:43:32
%S A182318 1,3,5,7,11,13,15,17,19,21,23,27,29,31,33,35,37,39,41,43,47,51,53,55,
%T A182318 57,59,61,65,67,69,71,73,77,79,83,85,87,89,91,93,95,97,101,103,105,
%U A182318 107,109,111,113,115,119,123,125,127,129,131,133,135,137,139,141,143,145,149
%N A182318 List of positive integers whose prime tower factorization, as defined in comments, does not contain the prime 2.
%C A182318 The prime tower factorization of a number can be recursively defined as follows: the prime tower factorization of 1 is itself; to find the prime tower factorization of an integer n > 1, let n = p_1^e_1 * p_2^e_2 * ... * p_k^e_k be the canonical prime factorization of n, then the prime tower factorization is given by p_1^f_1 * p_2^f_2 * ... * p_k^f_k, where f_i is the prime tower factorization of e_i.
%C A182318 An alternative definition: let I(n) be the indicator function for the set of positive integers whose prime tower factorization does not contain a 2. Then I(n) is the multiplicative function satisfying I(p^k) = I(k) for p prime not equal to 2, and I(2^k) = 0.
%H A182318 Rémy Sigrist, <a href="/A182318/b182318.txt">Table of n, a(n) for n = 1..10000</a>
%H A182318 Patrick Devlin and Edinah Gnang, <a href="http://arxiv.org/abs/1204.5251">Primes Appearing in Prime Tower Factorization</a>, arXiv:1204.5251 [math.NT], 2012-2014.
%p A182318 # The integer n is in this sequence if and only if
%p A182318 # containsPrimeInTower(2, n) returns false
%p A182318 containsPrimeInTower:=proc(q, n) local i, L, currentExponent; option remember;
%p A182318   if n <= 1 then return false: end if;
%p A182318 if type(n/q, integer) then return true: end if;
%p A182318 L := ifactors(n)[2];
%p A182318   for i to nops(L) do currentExponent := L[i][2];
%p A182318     if containsPrimeInTower(q, currentExponent) then return true: end if
%p A182318   end do;
%p A182318   return false:
%p A182318 end proc:
%t A182318 Select[Range[150], ! MemberQ[Flatten@ FixedPoint[Map[If[PrimeQ@ Last@ # || Last@ # == 1, #, {First@ #, FactorInteger@ Last@ #}] &, #, {Depth@ # - 2}] &, FactorInteger@ #], 2] &] (* _Michael De Vlieger_, Feb 17 2017 *)
%t A182318 containsPrimeInTower[q_, n_] := containsPrimeInTower[q, n] = Module[{i, L, currentExponent}, If[n <= 1, Return[False]]; If[IntegerQ[n/q], Return[True] ]; L = FactorInteger[n]; For[i = 1, i <= Length[L], i++, currentExponent = L[[i, 2]]; If[containsPrimeInTower[q, currentExponent], Return[True]]]; Return[False]];
%t A182318 Select[Range[150], !containsPrimeInTower[2, #]&] (* _Jean-François Alcover_, Jan 22 2019, translated from Maple *)
%o A182318 (PARI) is(n)=if(n<4, return(n!=2)); if(n%2==0, return(0)); my(f=factor(n)[,2]); for(i=1,#f, if(!is(f[i]), return(0))); 1 \\ _Charles R Greathouse IV_, May 16 2024
%Y A182318 A276378 is a subsequence.
%K A182318 nonn
%O A182318 1,2
%A A182318 _Patrick Devlin_, Apr 24 2012
%E A182318 Typo in Maple program corrected by _Rémy Sigrist_, Dec 13 2016