This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182321 #24 Dec 06 2019 21:43:23 %S A182321 0,1,2,1,3,2,1,2,3,2,1,4,2,3,2,1,3,4,2,3,2,1,2,3,4,2,3,2,1,3,2,3,4,2, %T A182321 3,2,1,4,3,2,3,4,2,3,2,1,3,4,3,2,3,4,2,3,2,1,2,3,4,3,2,3,4,2,3,2,1 %N A182321 Number of iterations of A025581(n) required to reach 0. %C A182321 Following the notation in the link, for n >= 0, let n = (0 + 1 + 2 + ... + f(n)) - g(n) be the representation of n with f(n) and g(n) minimal such that 0 <= g(n) <= f(n). Then f(n) = A002024(n) = round(sqrt(2n)), and g(n) = A025581(n) = f(n)*(f(n)+1)/2 - n. %C A182321 With this notation, a(n) is the number of iterations of g(n) needed to reach 0. %C A182321 The sequence a(n) is essentially the function phi(n) of the link. %C A182321 The sequence a(n) has a high degree of fractal-like symmetry. Consider, for instance, the sequence in the triangular array (read left to right then top to bottom, with the term for a(0) on top): %C A182321 0 %C A182321 1 %C A182321 2 1 %C A182321 3 2 1 %C A182321 2 3 2 1 %C A182321 Then the rows of this triangle (read from right to left) are simply 1+a(n). %C A182321 a(n) is related to the recurrence between A186053 and A182298. %C A182321 For n >= 1, a(n) is the number of terms in the minimal alternating triangular-number representation of n+1, defined at A255974. - _Clark Kimberling_, Apr 10 2015 %H A182321 Clark Kimberling, <a href="/A182321/b182321.txt">Table of n, a(n) for n = 0..1000</a> %H A182321 Patrick Devlin, <a href="http://arxiv.org/abs/1202.1331">Integer Subsets with High Volume and Low Perimeter</a>, arXiv:1202.1331v1 [math.CO] %F A182321 The Devlin link shows a(n) < log_2(log_2(n/2)) + 2. %e A182321 g(8) = 2, g(2) = 1, g(1) = 0. Therefore a(8) = 3. %p A182321 # With this code, the n-th term of the sequence is given by a call to a(n) %p A182321 f:=n->round(sqrt(2*n)): g:=n->f(n)*(f(n)+1)/2-n: %p A182321 a:=proc(n) option remember: %p A182321 if n < 1 then return 0: fi: return 1 + a(g(n)): %p A182321 end proc: %t A182321 (* This program computes the sequence as the number of terms in the minimal alternative triangular-number representation of n+1. *) %t A182321 b[n_] := n (n + 1)/2; bb = Table[b[n], {n, 0, 1000}]; %t A182321 s[n_] := Table[b[n], {k, 1, n}]; %t A182321 h[1] = {1}; h[n_] := Join[h[n - 1], s[n]]; g = h[100]; r[0] = {0}; %t A182321 r[n_] := If[MemberQ[bb, n], {n}, Join[{g[[n]]}, -r[g[[n]] - n]]]; %t A182321 Join[{0}, Rest[Table[Length[r[n]], {n, 0, 100}]]] (* A182321 for n >= 1 *) %t A182321 (* _Clark Kimberling_, Apr 10 2015 *) %Y A182321 Cf. A025581, A002024, A255974. %K A182321 nonn %O A182321 0,3 %A A182321 _Patrick Devlin_, Apr 24 2012