This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182333 #28 Feb 16 2025 08:33:13 %S A182333 1,4,6,25,104,484,2136,11664,71136,451584,3006720,21902400,176774400, %T A182333 1456185600,12758860800,117456998400,1181072793600,12023694950400, %U A182333 130072449024000,1451792885760000,17487355576320000,212389727477760000,2729844680048640000 %N A182333 Number of arrangements of n bishops such that every square of the board is controlled by at least one bishop. %C A182333 Number of minimum dominating sets in the n X n bishop graph. - _Eric W. Weisstein_, Jun 04 2017 %D A182333 A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, vol.1, 1987, p.11 and p.83-88. %H A182333 Vincenzo Librandi, <a href="/A182333/b182333.txt">Table of n, a(n) for n = 1..200</a> %H A182333 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BishopGraph.html">Bishop Graph</a> %H A182333 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a> %F A182333 a(n) = (((2*floor(n/4))!)^2/128)*(n^5 + 3*n^4 + n^3 + 35*n^2 + 38*n + 2 - (n^5 - n^4 - 7*n^3 - n^2 - 10*n - 30)*(-1)^n -4*(n^3 + 2*n^2 + n - 4)*n*cos(Pi*n/2) - 2*(n^5 + n^4 - 11*n^3 - 7*n^2 - 2*n + 2)*sin(Pi*n/2)), for n > 1. %F A182333 a(n) = A323500(n) * A323501(n) for n > 1. - _Andrew Howroyd_, Sep 08 2019 %t A182333 Table[If[n==1,1,((2*Floor[n/4])!)^2/128*(n^5+3*n^4+n^3+35*n^2+38*n+2-(n^5-n^4-7*n^3-n^2-10*n-30)*(-1)^n-4*(n^3+2*n^2+n-4)*n*Cos[Pi*n/2]-2*(n^5+n^4-11*n^3-7*n^2-2*n+2)*Sin[Pi*n/2])],{n,1,25}] %o A182333 (PARI) a(n)={if(n==1, 1, (n\4*2)!^2*if(n%4<2, if(n%2==0, (n+1)^2, (n^3 + 3*n^2 + 2*n - 2)/2), if(n%2==0, (n^2+n+2)^2/4, (n+1)*(n-1)*(n^3 + n^2 - 6*n + 6)/8))/4)} \\ _Andrew Howroyd_, Sep 09 2019 %Y A182333 Cf. A005635, A122749, A323500, A323501. %K A182333 nonn %O A182333 1,2 %A A182333 _Vaclav Kotesovec_, Apr 25 2012