cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182337 List of positive integers whose prime tower factorization, as defined in comments, does not contain the prime 3.

This page as a plain text file.
%I A182337 #23 Apr 11 2020 06:10:23
%S A182337 1,2,4,5,7,10,11,13,14,16,17,19,20,22,23,25,26,28,29,31,32,34,35,37,
%T A182337 38,41,43,44,46,47,49,50,52,53,55,58,59,61,62,65,67,68,70,71,73,74,76,
%U A182337 77,79,80,82,83,85,86,89,91,92,94,95,97,98,100,101,103,106
%N A182337 List of positive integers whose prime tower factorization, as defined in comments, does not contain the prime 3.
%C A182337 The prime tower factorization of a number can be recursively defined as follows:
%C A182337 (0) The prime tower factorization of 1 is itself
%C A182337 (1) To find the prime tower factorization of an integer n>1, let n = p1^e1 * p2^e2 * ... * pk^ek be the usual prime factorization of n. Then the prime tower factorization is given by p1^(f1) * p2^(f2) * ... * pk^(fk), where fi is the prime tower factorization of ei.
%C A182337 As an alternative definition, let I(n) be the indicator function for the set of positive integers whose prime tower factorization does not contain a 3. Then I(n) is the multiplicative function satisfying I(p^k) = I(k) for p prime not equal to 3, and I(3^k) = 0.
%H A182337 Amiram Eldar, <a href="/A182337/b182337.txt">Table of n, a(n) for n = 1..10000</a>
%H A182337 Patrick Devlin and Edinah Gnang, <a href="https://arxiv.org/abs/1204.5251">Primes Appearing in Prime Tower Factorization</a>, arXiv:1204.5251 [math.NT], 2012-2014.
%p A182337 # The integer n is in this sequence if and only if
%p A182337 # containsPrimeInTower(3, n) returns false
%p A182337 containsPrimeInTower:=proc(q, n) local i, L, currentExponent; option remember;
%p A182337 if n <= 1 then return false: end if;
%p A182337 if type(n/q, integer) then return true: end if;
%p A182337 L := ifactors(n)[2];
%p A182337 for i to nops(L) do currentExponent := L[i][2];
%p A182337   if containsPrimeInTower(q, currentExponent) then return true: end if
%p A182337 end do;
%p A182337 return false:
%p A182337 end proc:
%p A182337 select(x-> not containsPrimeInTower(3,x), [$1..120])[];
%t A182337 indic[1] = 1; indic[n_] := indic[n] = Switch[f = FactorInteger[n], {{3, _}}, 0, {{_, _}}, indic[f[[1, 2]] ], _, Times @@ (indic /@ (Power @@@ f))]; Select[Range[120], indic[#] == 1&] (* _Jean-François Alcover_, Feb 25 2018 *)
%Y A182337 Cf. A182318.
%K A182337 nonn
%O A182337 1,2
%A A182337 _Patrick Devlin_, Apr 25 2012