cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182338 List of positive integers whose prime tower factorization, as defined in comments, contains the prime 3.

This page as a plain text file.
%I A182338 #19 Apr 11 2020 06:10:50
%S A182338 3,6,8,9,12,15,18,21,24,27,30,33,36,39,40,42,45,48,51,54,56,57,60,63,
%T A182338 64,66,69,72,75,78,81,84,87,88,90,93,96,99,102,104,105,108,111,114,
%U A182338 117,120,123,125,126,129,132,135,136,138,141,144,147,150,152,153
%N A182338 List of positive integers whose prime tower factorization, as defined in comments, contains the prime 3.
%C A182338 This set is the complement of A182337.
%C A182338 The prime tower factorization of a number can be recursively defined as follows:
%C A182338 (0) The prime tower factorization of 1 is itself
%C A182338 (1) To find the prime tower factorization of an integer n>1, let n = p1^e1 * p2^e2 * ... * pk^ek be the usual prime factorization of n. Then the prime tower factorization is given by p1^(f1) * p2^(f2) * ... * pk^(fk), where fi is the prime tower factorization of ei.
%H A182338 Amiram Eldar, <a href="/A182338/b182338.txt">Table of n, a(n) for n = 1..10000</a>
%H A182338 Patrick Devlin and Edinah Gnang, <a href="http://arxiv.org/abs/1204.5251">Primes Appearing in Prime Tower Factorization</a>, arXiv:1204.5251v1 [math.NT], 2012-2014.
%p A182338 # The integer n is in this sequence if and only if
%p A182338 # containsPrimeInTower(3, n) returns true
%p A182338 containsPrimeInTower:=proc(q, n) local i, L, currentExponent; option remember;
%p A182338 if n <= 1 then return false: end if;
%p A182338 if type(n/q, integer) then return true: end if;
%p A182338 L := ifactors(n)[2];
%p A182338 for i to nops(L) do currentExponent := L[i][2];
%p A182338 if containsPrimeInTower(q, currentExponent) then return true: end if
%p A182338 end do;
%p A182338 return false:
%p A182338 end proc:
%p A182338 select(x-> containsPrimeInTower(3,x), [$1..160])[];
%t A182338 indic[1] = 1; indic[n_] := indic[n] = Switch[f = FactorInteger[n], {{3, _}}, 0, {{_, _}}, indic[f[[1, 2]]], _, Times @@ (indic /@ (Power @@@ f))];
%t A182338 Select[Range[200], indic[#] != 1&] (* _Jean-François Alcover_, Jul 11 2018 *)
%Y A182338 Complement of A182337.  Cf. A182318.
%K A182338 nonn
%O A182338 1,1
%A A182338 _Patrick Devlin_, Apr 25 2012