This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182349 #6 Aug 11 2021 12:12:10 %S A182349 1,6,30,120,435,1446,4536,13560,39045,108950,296178,787368,2053335, %T A182349 5265750,13306380,33188040,81815145,199585830,482290630,1155444120, %U A182349 2746489851,6481600326,15195437280,35407315800,82038719565,189089191926,433704632346,990244936520 %N A182349 G.f.: exp( Sum_{n>=1} 6 * A084214(n) * x^n/n ) where g.f. of A084214 is (1+x^2)/((1+x)*(1-2*x)). %H A182349 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (6,-6,-24,39,42,-72,-48,48,32). %F A182349 G.f.: 1/((1+x)^4*(1-2*x)^5). %e A182349 G.f.: A(x) = 1 + 6*x + 30*x^2 + 120*x^3 + 435*x^4 + 1446*x^5 + 4536*x^6 +... %e A182349 such that %e A182349 log(A(x))/6 = x + 4*x^2/2 + 6*x^3/3 + 14*x^4/4 + 26*x^5/5 + 54*x^6/6 + 106*x^7/7 + 214*x^8/8 +...+ A084214(n) * x^n/n +... %t A182349 CoefficientList[Series[1/((1+x)^4(1-2x)^5),{x,0,30}],x] (* or *) LinearRecurrence[{6,-6,-24,39,42,-72,-48,48,32},{1,6,30,120,435,1446,4536,13560,39045},30] (* _Harvey P. Dale_, Aug 11 2021 *) %o A182349 (PARI) {A084214(n)=polcoeff((1+x^2)/((1+x)*(1-2*x+x*O(x^n))), n)} %o A182349 {a(n)=polcoeff(exp(sum(k=1, n, 6*A084214(k)*x^k/k)+x*O(x^n)), n)} %o A182349 for(n=0, 16, print1(a(n), ", ")) %Y A182349 Cf. A084214. %K A182349 nonn %O A182349 0,2 %A A182349 _Paul D. Hanna_, Apr 25 2012