A182380 Primes whose base 26 representation (using a=1, b=2, ..., y=25, z=0) form English words or phrases.
31, 53, 61, 67, 109, 149, 157, 197, 223, 313, 347, 353, 359, 379, 409, 421, 503, 509, 521, 613, 691, 743, 859, 863, 929, 1049, 1097, 1163, 1181, 1201, 1249, 1487, 1489, 1601, 2281, 2437, 2441, 2521, 2579, 2741, 2753
Offset: 1
Examples
The English word "beg" becomes 2*26^2 + 5*26 + 7 = 1489, which is prime, so 1489 is in the sequence. Similarly, "bee" becomes 1487, which is also prime (thus, "bee" and "beg" are the first 'twin prime words' in this sequence).
Links
- C. K. Caldwell, The Prime Lexicon (This is for the related base 36 interpretation as in A038842)
Programs
-
Maple
# To test if a word w="someword" [all lowercase] corresponds to a prime, # call isprime(wordToNumber(w)) or ifactor(wordToNumber(w)) letters:=["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]: wordToNumber:=proc(w) local lastLetter, i: if length(w) = 0 then return 0: end if: lastLetter := w[length(w)]: for i to nops(letters) - 1 do if letters[i] = lastLetter then return i + 26*wordToNumber(w[1 .. length(w) - 1]): fi: od: return 26*wordToNumber(w[1 .. length(w) - 1]): end proc:
Comments