This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A182409 #28 Sep 04 2025 05:32:38 %S A182409 -1583,-1567,-1543,-1511,-1471,-1423,-1367,-1303,-1231,-1151,-1063, %T A182409 -967,-863,-751,-631,-503,-367,-223,-71,89,257,433,617,809,1009,1217, %U A182409 1433,1657,1889,2129,2377,2633,2897,3169,3449,3737,4033,4337,4649,4969,5297,5633,5977 %N A182409 Prime-generating polynomial: a(n) = 4*n^2 + 12*n - 1583. %C A182409 The polynomial generates 35 primes/negative values of primes in row starting from n = 0. %C A182409 The polynomial 4*n^2 - 284*n + 3449 generates the same primes in reverse order. %C A182409 Other related polynomials: %C A182409 For n = 6n + 6 than n = n-11 we get 144n^2 - 2808n + 12097 which generates 16 primes in row starting from n = 0 (with the discriminant equal to 2^9*3^2*199); %C A182409 For n = 12n + 12 than n = n - 15 we get 576n^2 - 15984n + 109297 which generates 17 primes in row starting from n = 0 (with the discriminant equal to 2^11*3^2*199). %C A182409 So this polynomial opens at least two directions of study: %C A182409 (1) polynomials of type 4n^2 + 12n - p, where p is prime (could be of the form 30k + 23); %C A182409 (2) polynomials with the discriminant equal to 2^n*3^m*199, where n is odd and m is even (an example of such a polynomial, with the discriminant equal to 2^5*3^4*199, is 36n^2 - 1020n + 3643 which generates 32 primes for values of n from 0 to 34). %H A182409 Vincenzo Librandi, <a href="/A182409/b182409.txt">Table of n, a(n) for n = 0..1000</a> %H A182409 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomial</a>. %H A182409 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A182409 From _Chai Wah Wu_, May 28 2016: (Start) %F A182409 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A182409 G.f.: (1591*x^2 - 3182*x + 1583)/(x - 1)^3. (End) %F A182409 E.g.f.: exp(x)*(-1583 + 16*x + 4*x^2). - _Elmo R. Oliveira_, Feb 09 2025 %t A182409 Table[4 n^2 + 12 n - 1583, {n, 0, 50}] (* _Vincenzo Librandi_, May 29 2016 *) %o A182409 (PARI) a(n)=4*n^2+12*n-1583 \\ _Charles R Greathouse IV_, Oct 01 2012 %o A182409 (Magma) [4*n^2+12*n-1583: n in [0..50]]; // _Vincenzo Librandi_, May 29 2016 %K A182409 sign,easy,changed %O A182409 0,1 %A A182409 _Marius Coman_, May 09 2012