A182412 Triangle T(n,k), read by rows, given by (1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1, 1, 1, 3, 6, 3, 5, 17, 19, 7, 11, 48, 80, 60, 17, 21, 119, 270, 308, 177, 41, 43, 290, 823, 1256, 1087, 506, 99, 85, 677, 2321, 4447, 5147, 3601, 1411, 239, 171, 1556, 6234, 14360, 20806, 19424, 11416, 3864, 577
Offset: 0
Examples
Triangle begins 1 1, 1 3, 6, 3 5, 17, 19, 7 11, 48, 80, 60, 17 21, 119, 270, 308, 177, 41 43, 290, 823, 1256, 1087, 506, 99 85, 677, 2321, 4447, 5147, 3601, 1411, 239
Formula
G.f.: (1-y*x)/(1-(1+2*y)*x-(2+3*y+y^2)*x^2)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + 2*T(n-2,k) + 3*T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1, T(2,0) = T(2,2) = 3, T(2,1) = 6 and T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*(-1)^k = A000007(n).
Comments