cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182421 a(n) = Sum_{k = 0..n} C(n,k)^7.

This page as a plain text file.
%I A182421 #30 Jun 17 2024 15:49:46
%S A182421 1,2,130,4376,312706,20156252,1622278624,132282417920,11716609750402,
%T A182421 1067553850832372,101275413131018380,9844149854624122160,
%U A182421 980597565209377223200,99518148302583383833280,10272819477206557916630080,1075608762378043981968997376
%N A182421 a(n) = Sum_{k = 0..n} C(n,k)^7.
%H A182421 Vincenzo Librandi, <a href="/A182421/b182421.txt">Table of n, a(n) for n = 0..200</a>
%H A182421 Vaclav Kotesovec, <a href="/A182421/a182421_1.txt">Recurrence (of order 4)</a>
%H A182421 M. A. Perlstadt, <a href="http://dx.doi.org/10.1016/0022-314X(87)90069-2">Some Recurrences for Sums of Powers of Binomial Coefficients</a>, Journal of Number Theory 27 (1987), pp. 304-309.
%H A182421 Jin Yuan, Zhi-Juan Lu, Asmus L. Schmidt, <a href="https://dx.doi.org/10.1016/j.jnt.2008.03.011">On recurrences for sums of powers of binomial coefficients</a>, J. Numb. Theory 128 (2008) 2784-2794
%F A182421 Asymptotic (p = 7): a(n) ~ 2^(p*n)/sqrt(p)*(2/(Pi*n))^((p - 1)/2)*( 1 - (p - 1)^2/(4*p*n) + O(1/n^2) ).
%F A182421 For r a nonnegative integer, Sum_{k = r..n} C(k,r)^7*C(n,k)^7 = C(n,r)^7*a(n-r), where we take a(n) = 0 for n < 0. - _Peter Bala_, Jul 27 2016
%F A182421 Sum_{n>=0} a(n) * x^n / (n!)^7 = (Sum_{n>=0} x^n / (n!)^7)^2. - _Ilya Gutkovskiy_, Jul 17 2020
%p A182421 a := n -> hypergeom([seq(-n, i=1..7)],[seq(1, i=1..6)],-1):
%p A182421 seq(simplify(a(n)),n=0..15); # _Peter Luschny_, Jul 27 2016
%t A182421 Table[Total[Binomial[n, Range[0, n]]^7], {n, 0, 20}] (* _T. D. Noe_, Apr 28 2012 *)
%o A182421 (PARI) a(n) = sum(k=0, n, binomial(n,k)^7); \\ _Michel Marcus_, Jul 17 2020
%Y A182421 Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
%K A182421 nonn,easy
%O A182421 0,2
%A A182421 _Vaclav Kotesovec_, Apr 28 2012