cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182426 Lengths of runs of consecutive isolated primes beginning with A166251(n).

This page as a plain text file.
%I A182426 #27 Jul 08 2018 01:41:04
%S A182426 2,1,1,1,3,2,1,1,2,1,1,1,3,2,1,1,3,2,1,2,1,2,1,4,3,2,1,1,1,2,1,1,2,1,
%T A182426 1,2,1,1,2,1,1,1,1,2,1,1,1,1,2,1,2,1,2,1,1,1,1,1,1,1,2,1,4,3,2,1,1,2,
%U A182426 1,1,1,1,2,1,2,1,2,1,1,1,1,3,2,1,2,1,1,2,1,2,1,3,2,1
%N A182426 Lengths of runs of consecutive isolated primes beginning with A166251(n).
%C A182426 Theorem. If the sequence is unbounded, then there exist arbitrarily long sequences of consecutive primes p_k, p_(k+1),...,p_m such that every interval (p_i/2, p_(i+1)/2), i=k,k+1,...,m-1, contains a prime.
%H A182426 Reinhard Zumkeller, <a href="/A182426/b182426.txt">Table of n, a(n) for n = 1..10000</a>
%H A182426 V. Shevelev, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Shevelev/shevelev19.html">Ramanujan and Labos primes, their generalizations, and classifications of primes</a>, J. Integer Seq. 15 (2012) Article 12.5.4.
%H A182426 J. Sondow, J. W. Nicholson, and T. D. Noe, <a href="http://arxiv.org/abs/1105.2249"> Ramanujan Primes: Bounds, Runs, Twins, and Gaps</a>, J. Integer Seq. 14 (2011) Article 11.6.2.
%o A182426 (Haskell)
%o A182426 import Data.List (group)
%o A182426 a182426 n = a182426_list !! (n-1)
%o A182426 a182426_list = concatMap f $ group $ zipWith (-) (tail ips) ips where
%o A182426    f xs | head xs == 1 = reverse $ enumFromTo 2 $ length xs + 1
%o A182426         | otherwise    = take (length xs) $ repeat 1
%o A182426    ips = map a049084 a166251_list
%o A182426 -- _Reinhard Zumkeller_, May 18 2012
%Y A182426 Cf. A166251, A182423, A182405, A164368, A194598.
%Y A182426 Cf. A049084.
%K A182426 nonn
%O A182426 1,1
%A A182426 _Vladimir Shevelev_, Apr 28 2012
%E A182426 Data corrected: a(49)=2.