cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182436 Triangle T(n,k), read by rows, given by (2, -1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 1, 2, 5, 2, 4, 8, 11, 4, 4, 20, 25, 24, 8, 8, 28, 70, 69, 52, 16, 8, 60, 126, 213, 178, 112, 32, 16, 80, 288, 460, 599, 440, 240, 64, 16, 160, 472, 1128, 1489, 1600, 1056, 512, 128, 32, 208, 976, 2152, 3914, 4457, 4120, 2480, 1088, 256
Offset: 0

Views

Author

Philippe Deléham, Apr 28 2012

Keywords

Comments

Row sums are the powers of 3.

Examples

			Triangle begins :
1
2, 1
2, 5, 2
4, 8, 11, 4
4, 20, 25, 24, 8
8, 28, 70, 69, 52, 16
8, 60, 126, 213, 178, 112, 32
16, 80, 288, 460, 599, 440, 240, 64
16, 160, 472, 1128, 1489, 1600, 1056, 512, 128
32, 208, 976, 2152, 3914, 4457, 4120, 2480, 1088, 256
		

Crossrefs

Formula

G.f.: (1+2*x-y*x)/(1-2*y*x-(2+y)*x^2).
T(n,k) = 2*T(n-1,k-1) + 2*T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,1) = 1, T(1,0) = T(2,0) = T(2,2) = 2, T(2,1) = 5 and T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A123335(n-1), A016116(n+1), A000244(n), A057087(n), A091928(n) for x = -2, -1, 0, 1, 2, 3 respectively.